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Program 
overview

Develop fundamental skill sets 
and unique expertise
-
The fi rst semester, from September to December, will focus 
on knowledge and skills that will be required in your future 
professional life:
•  Management, including a project as part of the emlyon 

business school “transforming early makers” track;
•  An introduction to big data and artifi cial intelligence;
•  The healthcare ecosystem.

During the second semester, from January to March, you 
will build on these subjects and develop your expertise. 
Some seminars will take place in Saint-Etienne on the Mines 
Saint-Etienne campus and CHU (hospital units). The fi nal 
part of your course will be spent in Asia (Asian business 
environment, working on an in-company project with 
specialization courses).
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HMDI Summer E-book

FT
Welcome to our MSc in Health Management and Data Intelligence. 
In order to set you up to speed in our program, we wanted to share a simple compilation of articles and texts (and even short stories) that will create the big picture, the backdrop of our program. The readings have been curated by professors and the heads of the program. 
This is not mandatory bibliography, but would be very helpful to enter in the general topics of our MSc in.
We hope you will have an amazing summer, and looking forward to seeing you in September.

FT
THEMES

* Artificial Intelligence 
— General discussion
— AI and healthcare
—The  workplace
—Devices and applications
—Ethical questions

* Innovation 
- How to turn ideas into business
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* Machine Learning and Diagnostics

* Innovation and R&D in the pharmaceutical industry

* Genetic edition 

* Ethics and Technology


FT
Welcome to our MSc in Health Management and Data Intelligence. 
In order to set you up to speed in our program, we wanted to share a simple compilation of articles and texts (and even short stories) that will create the big picture, the backdrop of our program. The readings have been curated by professors and the heads of the program. 
This is not mandatory bibliography, but would be very helpful to enter in the general topics of our MSc in.
We hope you will have an amazing summer, and looking forward to seeing you in September.
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Expand 
your horizons

Get a global view 
on 3 continents
-
With professors from around the globe, a wide range of 
modules, international students on campus, an overseas 
study trip and the third semester spent in Shanghai, you 
will benefi t from a truly global program.

FT


FT
CONTENT

* Artificial Intelligence : the impact on employment and the workplace (George Krasadakis)

* Application of mobile health, telemedicine and artificial intelligence to echocardiography (Karthik Seetharam, Noboyuki Kagiyama and Partho Sengupta)

* Understanding Artificial Intelligence (David Alayón)

* Artificial intelligence in the workplace : How AI is Transforming your employee experience (Bernard Marr)

* Tomorrow is waiting (Holli Mintzer)

* Diagnosing the decline in pharmaceutical R&D efficiency (Scannell, Blanckley, Boldon, Warrington)

* Clinical Development success rates for investigational drugs (Hay, Thomas, Craighead, Economides, Rosenthal)

* Innovation in the pharmaceutical industry: New estimates of R&D cost (DiMasi, Grabowski, Hansen)

* Before using birth control apps, consider your privacy (Megal Molteni)

* Eric Topol: AI can restore the care in healthcare (Interview by Nicola Davis, The Guardian)

* Exhalation (Ted Chiang)

* Having good idea is not enough. Here’s how to turn yours into a valuable business (Annabel Acton)

* A machine-learning model to predict pathological upgrade and redue unnecessary surgical excision (Bahl, Barzilay, Yedida, Locascio, Yu, Lehman).

* Patterns of a Murmuration, in billions of data points (Jy Yang)

* The apple watch is now the control center for your health (Robbie Gonzalez)

* Collective intelligence in teams and organizations (Woolley, Aggarwal & Malone).

* Teamwork in health care (Mao & Woolley)
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Become a health industry expert 
with in-depth knowledge 
of the impact of AI

10

Well prepared for your future job
-
The in-company project (ICP), your graduate thesis and a 
professional placement lasting 4 to 6 months will prepare you 
for your career.

Your fi nal internship (or professional placement) will be an 
excellent opportunity to put your academic knowledge to 
the test, while acquiring tangible experience to boost your 
employability. 

In addition, your graduate thesis will be an analytical work on 
a topic related to the professional experience gained during 
the program. This is a great opportunity for you to research 
a subject which has the potential to make a signifi cant 
contribution to your personal and professional development. 
An integral part of the thesis is the presentation of your work in 
front of an offi  cial jury. This presentation is an ideal way for you 
to market yourself and showcase the skills you have acquired 
over the course of the program.

Well trained to boost 
your employability
-
As a student of the MSc in Health Management & Data 
Intelligence, you will benefi t from a dedicated careers service 
which will include workshops, expert panels, professional 
events, company visits, etc. The careers services departments 
from both schools will provide you with continual support, 
helping you identify career goals and develop action plans. 
More than 250 events are held annually on our campuses, 
with 1,600 partner companies including healthcare industry 
specifi cs.

Which positions are next?
-
Job profi les and positions will depend on your original 
background. The program prepares you for diff erent 
positions, working with multiple stakeholders involved 
in the current transformation of the health industry’s 
value chain, potentially including:

•  Consulting: most strategy and organization consulting 
fi rms have developed a specialization in the health 
sector, with the aim to supporting the various 
stakeholders in their transformation, including the 
digital transformation.

•  Project or product management in pharmaceutical 
laboratories and/or medical device manufacturers: 
to respond to an increased demand for personalized 
and secure care, these stakeholders implement 
cooperative policies that strongly mobilize the use of 
data.

•  Management/implementation of projects related 
to artifi cial intelligence in the health sector: digital 
transformation driver, digital business developer, 
functional consultant, business developer in 
med-tech startups, etc.

•  Interface roles: connecting pharmaceutical or 
industrial medical device or diagnostic laboratories, 
innovative startups, healthcare facilities and other 
ecosystem stakeholders.

•  Product/marketing within the AI environment: 
project manager or product manager in 
pharmaceutical laboratories and/or medical device 
manufacturers, etc.

•  Business intelligence management: with the 
possibility of becoming Chief Digital Offi  cer.

•  The ethics of AI & health: compliance manager, CSR 
manager, data protection offi  cer.

•  Business development in med-tech startups: with 
the ability to integrate the languages and rules 
of both the startup and its clients, whether they 
are pharmaceutical companies, medical device 
companies, hospitals or clinics.

•  Depending on your initial studies, this course may also 
lead to one of the following roles:

   -  Regulatory aff airs manager (for lawyers)
   -  Data privacy offi  cer (for lawyers)
   -  Compliance roles (for biologists or pharmacists)
   -  Junior data scientist (for engineers, computer 

scientists or statisticians)
   -  Data manager (for engineers, computer scientists or 

statisticians)
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https://medium.com/innovation-machine/artificial-intelligence-3c6d80072416 

Artificial Intelligence: the impact on 
employment and the workforce 
How is AI replacing jobs? Which roles and industries will be most impacted? How can 
societies get prepared? 
 

 
 
George Krasadakis 
Jan 18, 2018 · 5 min read 
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Although Artificial Intelligence dramatically improves our world in many ways, there 
are notable concerns regarding the forthcoming impact of A.I. on employment and 
the workforce. 

There are predictions talking about millions of unemployed people in the next decades — 
primarily due to the impact of Intelligent Automation and A.I. systems. 

In any case, the entire socioeconomic system is entering a phase of accelerating 
transformation: markets, businesses, education, government, social 
welfare, and employment models will be severely impacted. 



Tasks, Roles, and Jobs at risk 
Tasks that are monotonous, can be easily automated; this can gradually make certain 
roles obsolete. For instance, tasks and activities related to customer care/call center 
operation, document classification, discovery and retrieval, content moderation are 
more and more based on technology and automation and less on human work. The same 
is true for roles related to operation and support of production lines and factories: 
humans are being replaced by smart robots that can safely navigate the space, find and 
move objects (such as products, parts or tools) or perform complex assembling operations. 

A.I. proves to be very effective in handling even more complex activities — those requiring 
processing of multiple signals, data streams and accumulated knowledge in real time. A 
characteristic case is the autonomous vehiclesthat can capture and ‘understand’ the 
environment and its dynamics; they can ‘see’, decide and act in real-time, towards well-
defined optimization objectives. 

Sectors that will be impacted 
Transportation is already in a transformation mode — fully autonomous cars will be 
soon a reality — and they will be safer, more efficient and more effective. Professional 
drivers (taxi, trucks and more) will see the demand for their skill set dropping rapidly. 

Electronic commerce will also undergo a significant transformation: fulfillment 
centers will be fully automated, with robots navigating the space to collect products and 
execute customer orders; to be then sent or even delivered to customers, also 
automatically, with autonomous drones and/or cars. The importance of salespersons and 
networks of physical stores will shrink; we are close to scenarios where consumer A.I. 
agents negotiate with Retailer AI agents — based on different objectives, tactics, 
and strategies. 

Even more traditional professions which are built on top of strong human relationships, 
such as legal professions, will be significantly impacted: typical support services in a 
legal context, have to do with document handling -classification, discovery, 
summarization, comparison, knowledge extraction and management — tasks where AI 
agents can do a great job already. 

Financial services, Insurance and any other sector requiring a significant amount of 
data processing and content handling will also benefit from A.I. And of course states, 
governance, and social mechanisms — A.I. can have a great role in eliminating 
bureaucracy, improving the service to citizens, along with the design and performance 
of social programs. 
 



 

How Artificial Intelligence can replace human work 
— an example 

Imagine a typical customer care department: tens or even hundreds of specialized 
employees working with a shared mission: to handle customer requests, complaints, asks, 
etc. in the best possible way. 

The workstream of ‘handling a customer request in the best possible way’ can be broken 
down in separated jobs which are repeated over time and across different types of requests, 
for instance: customer identification, customer history retrieval, request 
understanding and classification, problem identification and mapping to a solution 
space, forwarding or escalating to another team, customer document retrieval and 
finally the decisioning based on the suitable corporate policy. 

All the above can be covered with increased effectiveness from A.I. algorithms — they 
prove to be faster, more accurate, reliable and cheaperthan the corresponding team of 
humans. A properly trained A.I. system can understand customer requests in 
natural language, identify the mentioned or implied entities (for instance, which 
product or service the request refers to); it can estimate customer’s intent early enough 
(for example, to activate a service or ask for help); it can instantly process large volumes 
of data and apply the corporate policy in order to identify the best action/ decision for the 
particular case; the decision can then be communicated to the customer in natural 
language. 

The system also knows early enough if it can handle the request with confidence or not; in 
the latter case, it knows where to redirect the request as an exception, for a human team 
to handle it. And all these, in milliseconds, as part of a chat or voice session between 
the customer and companies’ agent. 

This technological solution requires just a small percentage of the human team that a 
traditional customer care department has. And while this hybrid system is in 
operation, the A.I. component learns from the exceptions it forwards to the 
human team to handle, leading to a continuous improvement of its performance. 
This feedback loop will eventually minimize the need for human intervention, making 
the AI system autonomous. 



 

Getting ready 
In the long run, we will witness certain roles and jobs becoming less and less relevant, and 
finally obsolete. But, in most of the cases, Artificial Intelligence will have a supportive 
role to humans — empowering the human factor to perform better in handling 
complex and critical situations which require judgment and creative thinking. In parallel, 
there would be numerous new roles and specialties with a focus on technology and science. 
For example, there will be needs for highly skilled professionals 
to oversee or manage or coordinate the training of complex Artificial Intelligence 
systems; to ensure their integrity, security, objectivity and proper use. 

Under certain assumptions, and following the initial disruption due to technological 
unemployment, the AI revolution will lead to a new era of prosperity, 
creativeness, and well-being. Humans will no more need to perform routine, limited 
value, jobs. The workforce and the underlying employment models will move from long-
term, full-time employment agreements, to flexible, selective premium services offerings. 

There will be a stream of new business opportunities 
empowering a culture of entrepreneurship, 

creativeness and innovation. 

The above positive scenario requires a common, shared understanding of the technology, 
its opportunities, and its risks. Societies need to adapt to the new technology landscape, 
become more flexible and also inherit an attitude of lifelong learning, collaboration, 
innovation, and entrepreneurship. 

States need a new strategy with a focus on education; they need to rethink how markets, 
companies and employment agreements should work in the new era of intelligent 
automation; they need to redesign the social mechanisms to cover a range of new 
scenarios and situations. 

At an even higher level, we need a solid framework to avoid the unbalanced 
concentration of technology power and control. 
 
 
 

WRITTEN BY 

George	Krasadakis 
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REVIEW

Application of mobile health, telemedicine 
and artificial intelligence to 
echocardiography

Karthik Seetharam MD, Nobuyuki Kagiyama MD PhD and Partho P Sengupta MD DM

West Virginia University Heart and Vascular Institute, Morgantown, West Virginia, USA

Correspondence should be addressed to P P Sengupta: partho.sengupta@wvumedicine.org

Abstract

The intersection of global broadband technology and miniaturized high-capability 
computing devices has led to a revolution in the delivery of healthcare and the birth of 
telemedicine and mobile health (mHealth). Rapid advances in handheld imaging devices 
with other mHealth devices such as smartphone apps and wearable devices are making 
great strides in the field of cardiovascular imaging like never before. Although these 
technologies offer a bright promise in cardiovascular imaging, it is far from straightforward. 
The massive data influx from telemedicine and mHealth including cardiovascular imaging 
supersedes the existing capabilities of current healthcare system and statistical software. 
Artificial intelligence with machine learning is the one and only way to navigate through this 
complex maze of the data influx through various approaches. Deep learning techniques are 
further expanding their role by image recognition and automated measurements. Artificial 
intelligence provides limitless opportunity to rigorously analyze data. As we move forward, 
the futures of mHealth, telemedicine and artificial intelligence are increasingly becoming 
intertwined to give rise to precision medicine.

Introduction

Technological advancement has developed portable 
computer devices and miniaturized cardiac imaging 
devices. These devices with the simultaneous development 
of broadband technologies has led to a new frontier 
in communication by expanding the capabilities of 
information sharing among users worldwide. The effects 
of this digital landscape have permeated through multiple 
facets of daily life. Telemedicine and mobile health 
(mHealth), which is defined as use of mobile and wireless 
technologies to improve health care (1, 2), are becoming 
important in this digital landscape with cardiovascular 
medicine and the field of echocardiography being no 
exception. The Department of Health and Human 

Services estimates that more than 60% of all health care 
institutions in the United States currently use some form 
of telemedicine (3). Handheld imaging platforms and 
tele-interpreting has brought these trends into the field of 
echocardiography (4, 5).

Although big data generated by the telemedicine 
and cardiac imaging present great opportunity for 
cardiovascular research, this influx of data requires 
so much effort to integrate and interpret them that 
human cardiologists cannot digest all of it (6). Artificial 
intelligence (AI), including machine learning techniques, 
is increasingly recognized as a potential solution for 
facilitating a seamless transition between cardiologists 
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and big data. AI can integrate the multifactorial 
information from many aspects of healthcare, including 
echocardiographic data, and can help cardiologists 
make better clinical decisions even in resource-limited 
areas where experts are not readily accessible. mHealth, 
telemedicine and AI offer bright promises intertwined 
with complex challenges in the field of cardiology 
and imaging. In this review, we will discuss the role of 
mHealth, telemedicine and AI in echocardiography.

Mobile health

Handheld imaging devices

As mobile computers and handheld imaging platforms 
become easily accessible and readily available, they 
present new paths of opportunity for the delivery and 
optimization of cardiovascular healthcare. Since the 
dawn of medicine, physical examination has been 
central to point-of-care diagnosis in cardiovascular 
medicine. The rapid rise of imaging devices which help 
physicians visualize the heart’s activities in real time have 
complemented physical examination and augmented 
clinical decision making. Despite the wide array of imaging 
capabilities at our disposal, correct diagnosis are not 
always made in time resulting in unfavorable outcomes 
(7). This has perpetuated a need, no a necessity for rapid 
and efficient diagnosis at bedside. The development of 
miniaturized handheld imaging platforms such as the 
pocket-size ultrasound can circumvent the obstacles of 

delayed diagnosis and reduce medical errors (7). There 
are several types of handheld ultrasounds with various 
capabilities; a laptop-based equipment has almost every 
2D echocardiographic application, while a pocket-size 
ultrasound does not usually have full-scale color-flow 
and spectral Doppler capabilities (Fig.  1). The point-
of-care ultrasound (POCUS) can fundamentally alter 
bedside medicine and be indispensable with physical 
examination. There are numerous studies which have 
clearly shown that POCUS is as efficient and effective 
compared to conventional machines. (8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18) Many researches have shown their 
capability in the assessment of valvular heart disease (19, 
20), heart failure (21, 22, 23), coronary artery disease (22, 
24) and so forth. (Table 1). Accuracy of POCUS has been 
reported well. For example, Abe et al. studied 130 patients 
with aortic stenosis and reported that pocket ultrasound 
was able to discriminate moderate-to-severe aortic stenosis 
with sensitivity 84% and specificity 90% even without 
quantitative Doppler information (19). Most recently, 
there are some smartphone-sized devices with image 
quality well enough for cardiac assessment using AI-based 
technologies. Some of these devices are supposedly 
financially cheap and help cardiologists in practice (e.g. 
Vscan, GE Healthcare and Butterfly IQ, Israel).

With powerful and affordable diagnostic imaging 
devices at the palm of our hands, POCUS can augment and 
add a significant impact on cardiovascular healthcare (25, 
26, 27, 28, 29), especially in patients living in resource-
limited areas.

Figure 1
Type of handheld ultrasound machines. There are 
several types of handheld ultrasounds with 
various capabilities; a laptop-based equipment 
has almost every 2D echocardiographic 
application (panel A), while a pocket-size 
ultrasound does not usually have full-scale 
color-flow and spectral Doppler capabilities (panel 
B). Reproduced, with permission, from Chamsi-
Pasha et al. (4).
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Table 1 Comparison of handheld ultrasound with reference standard.

Study Year
Number of 

subjects
Reference standard 
to PUS Study findings

Prinz et al. (8) 2011 349 Standard 
echocardiography

Statistically significant agreement between PUS and high-end 
echocardiography (1.6 ± 0.5 vs 1.7 ± 0.4, P < 0.01), regional wall 
motion (κ = 0.73, P < 0.01), LV measurements (r = 0.99, P < 0.01), 
regurgitation detection (k = 0.9, P < 0.01)

Galderisi et al. (9) 2010 304 Standard 
echocardiography

The K between PUS and reference was 0.67 in the pooled 
population (0.84 by experts and 0.58 by trainees)

Testuz et al. (10) 2013 104 Standard 
echocardiography

Statistically significant agreement between PUS and reference for 
left ventricular function and pericardial effusion (kappa: 0.89 and 
0.81). The agreement for aortic, mitral, tricuspid and left 
ventricular size was moderate (Kappa: 0.55–0.66)

Andersen et al. (11) 2011 108 Standard 
echocardiography

Strong agreement between PUS and reference for abdominal aorta 
and pericardial effusion was (r ≥ 0.92), right ventricular and 
valvular function (r ≥ 0.81). The correlation for aortic stenosis was 
(r = 0.62)

Skjetne et al. (7) 2011 119 Standard 
echocardiography

The PUS accurately assessed and diagnosed only 16% of patients in 
the cardiac unit. In 55% of patients, the reference had higher 
diagnostic value

Lafitte et al. (12) 2011 100 Standard 
echocardiography

The concordance between PUS and reference for LV function and 
morphology (κ = 0.91 and 0.96), left ventricular hypertrophy 
(k = 0.74), mitral regurgitation grades were 0.90, 0.95, and 1.00

Michalski et al. (13) 2012 220 Standard 
echocardiography

There was excellent correlation between PUS and reference (r =  
0.64–0.96, P < 0.001)

Biais et al. (14) 2012 151 Standard 
echocardiography

The PUS had good accordance with the reference in global left 
ventricular systolic dysfunction (κ = 0.87), pericardial effusion 
(κ = 0.75)

Prinz et al. (15) 2012 320 Standard 
echocardiography

In comparison to reference, substantial agreement in functional 
assessment (κ > 0.61, P < 0.01) and wall motion scoring (κ = 0.67, 
P < 0.01) could be observed over time. The correlation in left 
ventricular measurements (r > 0.98, P < 0.01) was very good

Fukuda et al. (16) 2009 125 Standard 
echocardiography

Left ventricular dimensions, fractional shortening, interventricular 
septum thickness, posterior wall thickness, left atrial dimension, 
and aortic diameter show excellent correlation (r = 0.87–0.98, all 
P < 0.001)

Mjolstad et al. (17) 2012 196 Standard 
echocardiography

Excellent agreement was observed between PUS and reference

Panoulas et al. (18) 2013 122 Standard 
echocardiography

After addition of PUS, there was improved diagnostic accuracy 
(Z = −7.761, P < 0.001)

Carlino et al. (25) 2018 102 Standard 
echocardiography

After addition of PUS, it helped improve diagnostic accuracy (all 
P < 0.01 vs single modalities)

Bhavnani et al. (39) 2018 254 Standard 
echocardiography

PUS had a shorter time to referral for intervention (83 ± 79 days vs 
180 ± 101 days; P < 0.001). The PUS group had lower risk of 
hospitalization and death (15% vs 28%, adjusted hazard ratio: 0.41; 
P = 0.013)

Filipiak-Strzecka 
et al. (26)

2017 100 Standard 
echocardiography

There was statistically significant correlation between PUS and 
reference for intimal medial thickness (r = 0.58; 95% CI: 0.48–0.66; 
P < 0.0001)

Phillips et al. (22) 2017 102 Standard 
echocardiography

In relation to reference, PUS had values ranging from 85% for left 
atrial enlargement to 100% for cardiomegaly, but limited specificity 
of cardiomegaly at just 51%

Esposito et al. (27) 2017 508 Standard 
echocardiography

In a subgroup, PUS was compared with the standard for abdominal 
aorta size (rho = 0.966, P < 0.0001)

Cavallari et al. (28) 2015 100 Standard 
echocardiography

The PUS had a shorter time for examination (6.1 ± 1.2 min vs 
13.1 ± 2.6 min, P < 0.0001) and saved waiting time (P < 0.001). No 
difference in conclusiveness between both groups (86 vs 96%; 
P = 0.08)

Khan et al. (29) 2014 240 Standard 
echocardiography

No discernable differences between both groups (P = 7.22 × 10(-7)). 

PUS, pocket-size ultrasound.
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Other mHealth devices

There are more than 160,000 health-related smartphone 
apps, such as apps for monitoring weight or diet control, 
available and these apps have been downloaded close to 
660 million times (30, 31, 32). In addition, there have 
been many smartphone-connected devices and wearable 
devices available, which enable remote monitoring of 
health conditions including heart rhythm and blood 
pressure (30, 33, 34, 35). One of the hottest topics in the 
field is detection of atrial fibrillation using smartwatch. 
Tison et al. compared smartwatch data with standard ECG 
in 9750 patients for detecting atrial fibrillation (36). A deep 
learning-based algorithm showed excellent prediction of 
atrial fibrillation (C-statistic 0.97) with a sensitivity of 98% 
and specificity of 90.2%. Those apps and devices, along 
with other devices such as point-of-care measurements 
of B-type natriuretic peptide (BNP) (37) and implantable 
pulmonary artery pressure sensors (38), have potential to 
provide better identification of underlying diseases and 
improve their outcomes in communities (Fig. 2).

Integration of handheld imaging platforms with 
other mHealth devices

Bhavnani et  al. conducted the first randomized trial of 
integration of POCUS with other mHealth devices in 
modern structural heart disease clinics in rural parts of 
India, under the ASE Foundation-Valvular Assessment 

Leading to Unexplored Echocardiographic Stratagems 
(ASEF-VALUES) (39). There were a total of 253 patients 
with structural heart disease randomized into two 
groups of mHealth clinic and standard healthcare. The 
main focus was the impact of mHealth with pocket-size 
echocardiography on medical decision making in patients 
with valvular heart disease in remote areas. The primary 
objective was time to referral for management for surgical 
or percutaneous intervention. The initial mHealth clinic 
was associated with shorter referral time for intervention 
(83 ± 79  days vs 180 ± 101  days; P < 0.001) and increased 
probability for intervention compared with standard 
healthcare (adjusted hazard ratio, 1.54; 95% CI, 0.96–2.47, 
P < 0.07). The patients assigned to mHealth clinic had 
lower hospitalization and death (15% vs 28%, adjusted 
hazard ratio, 0.41; 95% CI, 0.21–0.83; P < 0.013). In this 
study, the authors successfully integrated POCUS with 
other mHealth devices and showed that this integration 
can be associated with earlier medical interventions and 
favorable clinical outcome.

Telemedicine with POCUS and 
mHealth devices

Feasibility of POCUS in telemedicine

Thus, pocket-size ultrasound and other mHealth devices 
have allowed point-of-care screening of cardiovascular 

Figure 2
Interrogation of mHealth devices and use of artificial intelligence. Technological advancement has created a number of mobile health devices, which are 
available even in resource-limited areas. Involving remote experts using telemedicine helps appropriate diagnosis and management. Artificial intelligence 
can efficiently address the lack of experts and the influx of complex data generated by mHealth and telemedicine as well as advanced imaging 
modalities.
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diseases to resource-limited communities. Furthermore, 
application of telemedicine technologies enables 
mHealth strategies even in remote areas with limited 
access to experts. Singh et  al. (40) under American 
Society Echocardiography: Remote Echocardiography 
with Web-Based Assessments for Referral at a Distance 
(ASE-REWARD) performed a prospective study in order 
to test the feasibility of performing POCUS with long-
distance Web-based assessment of recorded images. 
Using pocket-size ultrasound, 1023 studies were scanned 
in a rural region of India, and the images were sent to 
physicians in remote locations for review through Web-
based platforms. The images were successfully uploaded 
and reviewed at a median time of 11:44 h. There was an 
excellent agreement in assessing valvular lesions, whereas 
the on-site readings were frequently modified by expert 
reviewers for left ventricular function and hypertrophy. 
The study successfully showed the feasibility of remote 
echocardiographic assessment and the incremental value 
of using Web-based remote assessment for facilitating 
appropriate mass triage of patients with suspected cardiac 
illnesses.

Choi et  al. (41) tested the feasibility of remote 
interpretation of echocardiographic images on a 
smartphone. Eighty-nine patients underwent POCUS and 
the images were sent to remote experts who read them 
using smartphone apps. The authors found that 38% 
of on-site, non-expert diagnosis was revised by remote 
experts, whose interobserver agreement was excellent. 
The study suggested that remote interpretation is feasible 
and should be considered when POCUS is done by non-
experts.

Limitations of POCUS

Although the benefits of POCUS are promising, there have 
been several challenges for its clinical application. One of 
the biggest concerns is the standardization of the quality 
of scan and interpretation (4). Because of its availability, 
POCUS can be used in more various situations and by 
wider range of observers than standard echocardiography. 
On the other hand, POCUS has limited ability in terms of 
image quality and applications such as pulse-wave Doppler. 
Scanning patients using POCUS and interpreting images 
by novice observers can result in overlooking important 
findings and wrong diagnosis (4). It is absolutely pivotal 
for all healthcare providers who use POCUS to be properly 
trained and understand the limitations of POUCS. Most 
professional societies require a minimum of 30 scans for 
basic training, but this number is not enough for accurate 

interpretation. Universal standardization of training is 
necessary for wide use of POCUS in clinical practice. Some 
of these limitations can be addressed by AI. For example, 
AI-based automated LVEF analysis program that works on 
PUS images (LVivo by DiA Imaging Analysis Ltd., Israel and 
Vscan by GE Healthcare) has been developed (42). This 
kind of programs will reduce the interobserver variability 
and help standardization of procedures. The lack of 
incentive for POCUS in US healthcare model is another 
problem, because more referrals and reimbursement 
for conventional echocardiography is more beneficial. 
A reward system is important to stimulate increased 
utilization.

Remote training and robot-assisted  
echocardiography

Even telemedicine enables remote assessment of acquired 
echocardiographic images, and appropriate acquisition 
itself requires expertise, which may limit its wider use in 
rural areas. Telemedicine also has a potential to address 
this issue through Web-based training. Bansal et al. (43) 
tested the feasibility of Web-based, real-time, hands-on, 
personalized training program of POCUS. Seventeen 
physicians in India were provided 6-h training of POCUS; 
nine had an on-site training and eight had an online 
training using transcontinental tele-echocardiography 
system. Although good-quality images were obtained 
more frequently by physicians trained on-site (90 vs 84%, 
P = 0.03), there were no difference between the two groups 
in agreement of the trained physicians’ diagnoses with 
expert interpretations. Such training, combined with 
Web-based integration of remote, expert interpretation of 
stored images, allows the delivery of echocardiographic 
expertise to remote communities, which could be of great 
help in optimizing cardiovascular health outcomes.

Robot-assisted remote echocardiography may be 
another solution. Boman et  al. conducted randomized 
control trial and showed that real-time robot-assisted 
remote echocardiography followed by cardiologic 
consultation at a distance significantly reduced the total 
diagnostic process time (44).

Advanced echocardiography in contrast 
to POCUS

As discussed earlier, POCUS is promising and has a 
huge impact in expanding and complimenting physical 
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examination. However, those handheld imaging 
platforms have limited function, and comprehensive 
and advanced echocardiography is definitely 
warranted in addition to POCUS. Recent advancement 
in echocardiography includes automation of 
measurements and analysis. Although speckle tracking 
echocardiography (STE) and 3D imaging have been the 
most promising methods in echocardiography for the 
past two decades, clinical use of these techniques is not 
sufficient due to time-consuming process. Automation 
of these techniques using AI algorithms are evolving 
and they help physicians and sonographers by reducing 
analysis time and increasing reproducibility (45, 46, 47). 
This is also a field where AI has a core role for evolution 
and for widespread use of the techniques. For example, 
although 3D echocardiography has been extensively 
reported to be superior to 2D echocardiography, the 
full adoption of this technique is not embraced due 
to time constraints and complicated measurement 
steps which disrupt clinical work flow. HeartModel 
(Philips Healthcare, Andover, MA, USA) is an AI-based 
fully automated quantification program for left heart 
chambers. The program dramatically reduces time for 
analysis (144 ± 32 to 26 ± 2 min, P < 0.0001) with even 
better interobserver measurement agreement compared 
with conventional 3D quantification (48, 49).

Artificial intelligence

Despite the transformative potential of mHealth and 
telemedicine, the data generated by these technologies 
are multifactorial and complex. In addition, imaging 
modalities including echocardiography also generate a 
huge amount of data; a single echo examination generates 
2 gigabyte of information and annually there can be 15 
petabytes of information produced (50). This large size of 
data would overwhelm current statistical software. AI is a 
field of computer science which mimics human thought 
process and learning capacity. AI could algorithmically 
quickly analyze and offer various interpretations of these 
elaborate datasets with lesser difficulty. With the rapid 
evolution of data, AI will be the primary and most efficient 
tool which brings the necessary revolution for integration 
of information into cardiovascular healthcare. In resource-
limited situations where mHealth and telemedicine have 
an important role, well-trained AI may complement 
the lack of experts. AI techniques, such as machine 
learning and deep learning, unravel hidden patterns 
within heterogeneous datasets using a number of various 

algorithms (50). With the advent of AI, the paradigm is 
being fundamentally altered from current statistical tools 
to cardiovascular precision medicine (Fig. 3) (51).

Type of machine learning

Machine learning is one subfield of AI, which aims at 
automatic discovery of regularities in data through the 
use of computer algorithms and generalizing those into 
new but similar data (Fig. 4). In general, machine learning 
tends to make less pre-assumption than traditional 
statistical method but requires greater data. Machine 
leaning techniques can be broadly split into supervised 
learning, unsupervised learning and reinforcement 
learning.

In supervised learning, the database is labeled with 
outcome and classes. Supervised learning frequently 
groups an observation into one or more categories or 
outcomes (51). It is ultimately designed to show how 
the independent variable is linked to the dependent 
variable. A statistical model is generated from the data 
to create a model to predict an event or complication. 
Supervised learning proves to be very valuable in 
classifying phenotypically different patients (51). In 
contrast to supervised learning, unsupervised learning 
uses database with no prior label present (34). The 
purpose of unsupervised learning is to discover the 

Figure 3
Growth of publications in machine learning. The x- and y-axis shows the 
year and the number of publications in PubMed with ‘Cardiology’ and 
‘Machine Learning’. The number of publications is rapidly growing, 
representing huge interest in the field. Reproduced, with permission, 
from Shameer et al. (50).
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relationship between variables. This machine-learning 
approach consists of clustering methods (hierarchical 
or K means), self-organizing maps, topological data 
analysis, information maximization analysis and finally 
deep learning. Reinforcement learning is derived from 
behavioral psychology. The algorithm learn and modify 
behavior through trial and error so as to maximize some 
notion of cumulative reward (51). Reinforcement learning 
is mostly used in game programs, such as AlphaGo 
software by DeepMind (52). Reinforcement learning has 
had limited role in healthcare so far.

Deep learning

Deep learning is a thriving discipline which learns complex 
hierarchical representations from data which has multiple 
levels of abstractions (53). It mimics the complexities of 
the human brain. Presently, deep learning is playing a 
prominent role in Facebook’s image recognition, speech 
recognition in Apple’s Siri and Amazon’s Alexa, Google 
brain and robots (53). Deep learning architecture utilizes 
an artificial neural network which contains multiple layers 
of neurons which facilitates reasoning and interpretation. 
Recent advances in graphic processing unit and cloud-
based platforms have spurred the growth of deep learning.

Deep learning requires a large elaborate data sets 
which requires information sharing between institutions 
and organizations. If the dataset is not large enough, 
overfitting is an issue (50). It has multiple layers and 
performs analysis in a nonlinear manner. This also 
increases the training time. Assembling the neural network 
is also lengthy process. Powerful computing processing 
unit and cloud-based systems are often necessary for deep 
learning.

Comparison of machine learning with 
traditional statistics

Logistic regression is one of the most commonly used 
methods in statistics to predict outcomes (50). However, 
this technique requires a strong number of assumptions 
to help generate P values. Nevertheless, machine 
learning can be used in any data set without making 
any assumptions of the underlying data. Especially for 
classification, machine learning can be more accurate and 
predictive. Another difference is the capability to deal with 
complex data. Electronic health record contains a massive 
amount of information from billing, international disease 
classification, lab values, imaging and medications. 
This can exceed the capacity of logistic regression 
model. Other statistical approaches such as univariate 
significance screening or stepwise regression, but the 
results do not translate well for patient care. Complex 
interaction between variable may be difficult to analyze 
with traditional approaches. Churpek et al. showed how 
flexible algorithms in machine learning was superior to 
conventional logistic regression for clinical deterioration 
in wards in a large multihospital study (54). Popular 
risk scores such as Framingham risk score, CHADS2 and 
CHA2DS2-VASc score, and so forth were derived from 
large trials and registries (55). However, Cook et al. found 
that there was an overestimation of these pooled cohort 
equations, believed that big data analytics could resolve 
the issue (56).

The role of machine learning in cardiology 
and echocardiography

Many machine-learning and deep learning techniques 
can be applied to researches in echocardiography 

Figure 4
Association of artificial intelligence, machine 
learning and deep learning. Artificial intelligence 
(AI), though there are various definitions by itself, 
represents any techniques which enables 
computers mimic human behavior when it’s used 
in medical field. Machine learning is a subfield of 
AI, which aims at automatic discovery of 
regularities in data through the use of computer 
algorithms and generalizing those into new but 
similar data. Deep learning is a subset of machine 
learning, which makes the computation of 
multi-layer neural networks feasible.
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(Table 2) (38, 48, 57, 58, 59, 60). For example, we showed 
that supervised learning algorithm, including artificial 
neural networks, support vector machines and random 
forests, could differentiate athlete heart and hypertrophic 
cardiomyopathy using STE data more accurately than 
traditional measures (58). We have also used supervised 
learning approach with 15 STE variables and the four 
conventional echocardiographic variables and showed 
that machine learning was superior to other echo 
parameters for differentiating constrictive pericarditis 
from restrictive cardiomyopathy (57).

Deep learning is being utilized for a number of 
image-based classifications. This machine learning 
approach is particularly useful for computer vision. Deep 
learning can track pattern recognition in cardiovascular 
imaging and heterogeneous syndromes. Left ventricular 
ejection fraction is usually assessed by manually tracing 
boundaries (53), but unfortunately this method can be 

subjective lack precision or reproducibility (61). Deep 
learning can greatly improve the accuracy of 2D STE and 
other imaging modalities (48, 59). This can be extended 
into other cardiovascular imaging modalities such as 3D 
STE and cardiac magnetic resonance imaging. It performs 
well even with noisy data such as strain imaging. 
Deep learning can be implemented into a number of 
cardiovascular diseases including heart failure, takotsubo 
cardiomyopathy, hypertension, atrial fibrillation, Brugada 
syndrome and so forth. It can categorize these conditions 
with new genotypes or phenotypes and innovative 
echocardiographic parameters can craft pathways for new 
therapies.

Recently, Zhang et  al. developed a deep learning 
algorithm that enables fully automated interpretation of 
echocardiography (62). Using a huge (over 14,000) sample 
of echocardiographic studies, the algorithm achieved 
a 96% accuracy in image recognition for distinguishing 

Table 2 Examples of application of machine learning techniques to echocardiographic research.

Study Algorithm model Brief algorithm description Data source Brief study description

Narula et al. (58) (a) Support vector 
machine

Finds a gap in 
multidimensional data 
and classifies data based 
on gap

Echocardiographic data To differentiate between 
athlete heart and 
hypertrophic 
cardiomyopathy

(b) Random forest Decision tree-based 
method derived from 
creating a number of 
decision trees

(c) Artificial neural 
network

Learns in a manner similar 
to a biological network

Sengupta et al. (57) Associative memory 
classifier-supervised 
learning

Used for making 
predictions based on a 
set of matrices. It is 
developed by observing 
co-occurrences of 
predictors from 
outcomes

Speckle tracking 
echocardiographic 
data

To differentiate between 
constrictive pericarditis and 
restrictive cardiomyopathy

Berikol et al. (48) Artificial neural network Echocardiographic data Echocardiographic data and 
clinical factors used to 
stratify cardiovascular risk

Lancaster et al. (59) Hierarchical 
clustering

It classifies similar objects 
into the same groups 
called clusters by building 
a hierarchy based on the 
distance between 
patients

Echocardiographic data To investigate the natural 
clustering of 
echocardiographic variables 
to measure left ventricular 
dysfunction and isolate 
high-risk phenotyping 
patterns

Abdolmanafi et al. (38) Deep learning It creates layered neural 
networks to extract and 
transform features and 
learn in supervised and/
or unsupervised 
manners

Coronary optical 
coherence 
tomography images

To automatically classify 
coronary artery layers in 
coronary optical coherence 
tomography images in 
Kawasaki disease

Bai et al. (60) Cardiac magnetic 
resonance

Deep learning was used to 
analyze short and long axis 
cardiac magnetic resonance 
imaging and compare with 
human performance
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between broad echocardiographic view classes (e.g. 
parasternal long axis from short axis), and 72–90% 
accuracy of image segmentation. Furthermore, the authors 
showed that the algorithm for automated quantification 
of cardiac structure and function was comparable or even 
superior to manual measurements across 11 internal 
consistency metrics (e.g. the correlation of left atrial and 
ventricular volume) and that the convolutional neural 
networks was successfully trained to detect hypertrophic 
cardiomyopathy, cardiac amyloidosis and pulmonary 
artery hypertension with high accuracy. Although the 
accuracy has not reached that of experts, application 
of deep learning to echocardiography interpretation is 
promising.

Future of artificial intelligence in cardiology

The rapid expansion of data is creating a moment 
of reckoning of sorts for cardiologists. With the 
development of POCUS integrated with mHealth devices 
and telemedicine, a concept which once seemed like a 
fantasy is now becoming a reality. AI, mainly machine 
learning techniques including deep learning, is the 
most effective means presently available to handle the 
sheer complexity data incoming from these evolutions. 
Compared to subspecialties of medicine, cardiologists 
have vast expanses of data at their disposal. As the 
complexities of data continue to grow, it is becoming 
imminent for an AI to be integrated into clinical practice. 
AI will become part and parcel of daily medicine, which 
is evidenced in the fields of radiology and pathology (63). 
It should be embraced not feared as it will enhance the 
clinical decision-making process. In the future, it may be 
necessary for all cardiologists to be physicians and data 
scientists simultaneously.

Conclusion

The burgeoning of mHealth, telemedicine and AI are 
the expanding the boundaries of echocardiography and 
cardiology. mHealth and telemedicine are establishing 
new bridges between patient and physician and 
helping underserved population to overcome previous 
barriers with their health care providers. AI is the truss 
support for these bridges. AI is the primary means 
and will be interconnected with the growth of these 
novel healthcare technologies for years to come. As 
mHealth and telemedicine create big data even in 

resource-limited areas where the number of experts 
is not sufficient and big data from these technologies 
are getting more and more complex, AI will assist 
cardiologists to provide more focused and personalized 
decision for the patients.
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Understanding	Arti�cial	Intelligence
David	Alayón Follow

Dec	9,	2018	·	11	min	read

When	I	published	the	article	“Understanding	Blockchain”	many	of	you	wrote	me	to	ask	me	if	I	could

make	one	dedicated	to	Artificial	Intelligence.	The	truth	is	that	I	hadn’t	had	time	to	get	on	with	it

and	before	sharing	anything,	I	wanted	to	finish	some	courses	in	order	to	add	value	to	the

recommendations.
The	problem	with	Artificial	Intelligence	is	that	it’s	much	more	fragmented,	both	technologically	and

in	use	cases,	than	Blockchain,	making	it	a	real	challenge	to	condense	all	the	information	and	share	it

meaningfully.	Likewise,	I	have	tried	to	make	an	effort	in	the	summary	of	key	concepts	and	in	the

compilation	of	interesting	sources	and	resources,	I	hope	it	helps	you	as	well	as	it	did	to	me!
BEGINNER

Let’s	start	with	a	little	history.	The	timeline	you	see	is	taken	from	this	article	and	it	shows	the	most

important	milestones	of	Artificial	Intelligence.	The	term	AI	goes	back	to	Alan	Turing	who	defined	a

test,	Turing	Test,	to	measure	a	machine’s	ability	to	exhibit	intelligent	behavior	equivalent	to,	or

indistinguishable	from,	that	of	a	human.	A	few	years	later	it	was	John	McCarthy	who	coined	the

term	officially,	at	the	famous	Dartmouth	Workshop,	with	the	following	phrase:	“every	aspect	of

learning	or	any	other	characteristic	of	intelligence	can,	in	principle,	be	described	with	such	precision

that	a	machine	can	be	made	to	simulate	it.	We	will	try	to	discover	how	to	make	machines	use	language,
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from	abstractions	and	concepts,	solve	problems	now	reserved	for	humans,	and	improve	themselves”.	The

rest	of	the	milestones	you	see,	mainly	Deep	Blue	and	AlphaGo,	will	appear	throughout	the	article	on

several	occasions.	I	recommend	that	you	also	watch	the	ColdFusion	video	where	some	more	details

about	the	history	of	Artificial	Intelligence	are	nuanced.

Something	really	interesting	that	appears	in	the	video	are	the	7	aspects	of	Artificial	Intelligence

defined	in	1955	and	that	are	still	valid	today,	and	in	which	we	have	currently	reached	(with	some

level	of	progress)	only	three	of	them:	programming	a	computer	to	use	general	language,	a	way	to

determine	and	measure	the	complexity	of	problems	and	self-improvement.	We	could	also	say	that	we

are	starting	with	“randomness	and	creativity”,	with	some	examples	like	Morgan’s	trailer	or	the	script

of	“Surprising”	(2016),	the	perfumes	of	Watson,	and	projects	like	AIVA,	Magenta	or	My	Artificial

Muse.
Therefore,	we	could	say	that	Artificial	Intelligence	are	machines	or	computer	programs	that

learn	to	perform	tasks	that	require	types	of	intelligence	and	that	are	usually	performed	by

humans.	And	when	we	talk	about	types	of	intelligence,	we	need	to	rescue	Jack	Copeland’s	reflection

on	what	intelligence	is:	“the	dominant	thought	in	psychology	considers	human	intelligence	not	as	a

single	ability	or	cognitive	process,	but	rather	as	a	set	of	separate	components.	Research	in	AI	has	focused

primarily	on	the	following	components	of	intelligence:	learning,	reasoning,	problem	solving,	perception,

and	comprehension	of	language”.
That	said,	let’s	go	with	the	different	types	of	Artificial	Intelligence.	In	the	video	there	were	two:

Weak	AI	or	also	called	Artificial	Narrow	Intelligence	(ANI),	which	allows	computers	to

outperform	humans	in	some	very	specific	tasks	(the	most	famous	example	is	IBM	Watson);	and

Strong	AI	or	Artificial	General	Intelligence	(AGI),	the	ability	of	a	machine	to	perform	the	same

intellectual	tasks	as	a	human	being	(we	are	far	from	reaching	it).	There	is	a	third	level	called

Artificial	Superintelligence	(ASI),	when	a	machine	possesses	an	intelligence	that	far	surpasses	the

brightest	and	most	gifted	human	minds	in	the	world	combined.
Another	way	to	categorize	it’s	in	four	levels:	Reactive	Machines,	which	simply	react	to	a	stimulus

(or	several)	but	cannot	build	on	previous	experiences	and	cannot	improve	with	practice	(IBM	Deep

Blue);	Limited	Memory,	can	retain	and	use	data	for	a	short	period	of	time	but	cannot	add	them	to	a

library	of	experiences	(Self	Driving	Cars);	Theory	of	Mind,	machines	that	imitate	our	mental

models:	have	thoughts,	emotions	and	memories	(none	yet	exist)	and	finally	Self-Awareness,	or

conscious	machines,	something	that	stays	in	the	realm	of	science	fiction	(for	now)
We	have	now	reached	the	ANI	or	Limited	Memory	level,	with	the	intention	of	making	the	next	leap

but	with	much	uncertainty	as	to	how	and	when	we	will	achieve	it.	If	we	focus	on	the	first

categorization,	there	is	a	pioneering	project	that	could	be	laying	the	groundwork	for	achieving	AGI

(although	it’s	still	light	years	away)	and	is	AlphaGo	or	its	latest	version:	AlphaZero.	This	last	one

uses	a	totally	different	approach	for	learning	than	the	rest	of	the	AIs	we	have	seen.	The	previous

versions	used	expert	knowledge	(humans	introducing	what’s	right)	or	needed	a	lot	of	data	(the

version	of	AlphaGo	that	won	Lee	Sedol	at	Go	learned	from	thousands	and	thousands	of	games).	On

the	contrary,	Alpha	Zero	uses	Reinforcement	Learning,	that	is,	it	learns	by	playing	against	itself.	In

this	article	you	can	see	what	it	means	and	how	in	40	days	by	learning	this	way	it	became	the	best	of

all	its	predecessors,	and	by	extension	the	best	in	the	world.
The	new	debate	with	DeepMind,	the	creators	of	AlphaGo	that	were	acquired	by	Google	in	2014,	is

whether	this	approach	is	the	right	one.	They	work	with	tabula	rasa,	that	is,	they	start	with	a	blank

canvas	where	Artificial	Intelligence	learns	completely	from	scratch.	Another	approach	would	be	if

Artificial	Intelligence	had	a	pre-wired	base,	as	Chomsky	says	with	his	Theory	of	Universal	Grammar,

What	is	Arti�cial	Intelligence	Exactly?What	is	Arti�cial	Intelligence	Exactly?
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or	directly	should	be	preloaded	with	a	layer	of	“common	sense”	like	what	Etzioni	is	creating	at	the

Allen	Institute	for	Artificial	Intelligence.
Returning	to	the	present	and	understanding	these	basic	concepts,	we	can	see	the	immense

applications	of	AI	and	how	we	already	have	many	of	them	working	in	our	hands	or	in	our	day	to

day:	virtual	assistants,	translators,	eCommerce	or	social	networks	recommendations,	chatbots	…	This

is	just	starting	and	is	going	at	full	speed!	If	we	look	a	little	into	the	future	it’s	clear	that	AI	is	going	to

change	companies,	industries,	countries	and	the	whole	world;	and	it’s	up	to	us	to	think	how	we

want	it	to	be	and	make	the	right	decisions	from	the	present.	Gerd	Leonhard	has	spoken	a	lot

about	this	topic	and	along	with	him	there	are	many	other	writers,	thinkers	and	futurists	who	have

explained	their	visions,	mainly	in	using	Artificial	Intelligence	to	increase	and	complement	us,	not	to

replace	us.
Agentive	Technology.	Artificial	Intelligence	should	augment	us,	give	us	the	tools	to	get	rid	of

work	and	do	it	with	autonomy.
Centaurs.	It	is	demonstrated	that	the	sum	of	IA	and	Humans	is	better	than	IA	alone	because	of

the	complementarity	of	competences	(Kasparov	proved	it	on	multiple	occasions).
Multiplicity.	The	key	lies	in	the	collaboration	between	Artificial	Intelligence	and	Amplified

Intelligence	(human	+	artificial).
AI	Superpowers.	Dr.	Kai-Fu	includes	variables	such	as	compassion,	love	and	I	would	say

empathy,	placing	AI	at	the	center.
Then	we	have	Yuval	Noah	Harari	and	Tristan	Harris	talking	about	dataism	and	making	a	call	for	a

big	reflection	and	ethics,	or	Elon	Musk	and	another	group	of	technologists	and	scientists,

developing	initiatives	to	raise	awareness	that	we	are	in	our	way	to	self-destruction	and	creating

projects	like	OpenAIfor	a	“safe”	Artificial	Intelligence.	I	personally	don’t	yet	see	this	Black	Mirror

approach	but	I	do	believe	that	we	are	at	the	point	of	starting	to	think	about	where	we	want	to

go	and	try	to	create	a	kind	of	world	committee	to	make	decisions	at	the	planetary	level	and	as

a	species.
To	finish	this	first	block,	here	you	have	a	list	of	books	on	AI,	highly	recommended	Nick	Bostrom’s,

and	a	list	of	films,	highly	recommended	the	last	two:	Her	(2013)	and	Ex	Machina	(2015).
ADVANCED

We’re	moving	to	the	next	level!	Regardless	of	the	category,	the	technological	learning	base	of

Artificial	Intelligence	is	mainly	based	on	two	pillars:	Symbolic	Learning	and	Machine	Learning.

Curiously,	the	first	pillar	was	the	one	that	began	everything	but	with	the	birth	of	Machine	Learning

and	specifically	with	Deep	Learning,	all	efforts	have	been	focused	on	the	second	(although	there

are	many	technologists	who	are	thinking	on	retaking	the	first).	Before	we	move	on,	take	a	look	at

this	video	by	Raj	Ramesh:

Really	interesting	how	it	synthesizes	the	different	branches	of	Artificial	Intelligence.	I	think	it’s	clear

that	the	most	promising	branch	that	has	come	to	stay	is	Machine	Learning,	which	is	nothing

more	than	a	system	capable	of	taking	large	amounts	of	data,	developing	models	that	can

successfully	classify	them	and	then	make	predictions	with	new	data.	To	understand	a	little

more	this	approach,	watch	this	CGP	Grey’s	video:

What	is	Arti�cial	Intelligence?	In	5	minutes.What	is	Arti�cial	Intelligence?	In	5	minutes.
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One	of	the	most	interesting	thing	is	that	these	models	are	not	programmed,	they	arise	from

training,	and	there	is	a	point	where	no	human,	nor	the	programmers	themselves,	can

understand	how	it	works.	By	now,	enough	new	“words”	have	come	out,	so	I’ll	leave	you	with	an	IA

dictionary	for	beginners	and	one	more	reading:	Difference	between	Machine	Learning,	Deep

Learning	and	Artificial	Intelligence.
Now	it’s	time	to	go	deeper	into	Deep	Learning,	the	most	advanced	approach	to	develop	Artificial

Intelligence	today.	After	reading	many	articles,	watching	many	videos	and	doing	some	courses,	I	can

say	with	certainty	that	an	ideal	way	to	have	a	complete	overview	of	Deep	Learning,	handling	basic

concepts,	technical	terminology	and	even	starting	to	know	some	tools	and	platforms	is

DeepLearningTV.	I	don’t	know	how	long	it	will	be	active	(I	recommend	you	download	the	videos)

because	it’s	been	a	while	since	their	last	update	and	I	don’t	see	any	company	or	community	behind

it…	Their	videos	are	pure	gold!	Here	you	have	the	complete	list	with	the	31	episodes:

Impressive,	isn’t	it?	I	think	what	needs	a	little	more	development	are	the	frameworks	or	tools	of

Machine	/	Deep	Learning.	It	talks	about	TensorFlow,	Caffe,	Torch,	DeepLearning4j	and	Theano

but	there	are	many	others	like	Keras,	AWS	Deep	Learning	AMI,	Google	Cloud	ML	Engine	or

Microsoft	Cognitive	CNTK.	As	complementary	material,	here	you	have	some	links	with

comparatives	of	these	platforms:
The	10	most	popular	machine	learning	frameworks	used	by	data	scientists
Top	8	open	source	AI	technologies	in	machine	learning
8	Best	Deep	Learning	Frameworks	for	Data	Science	enthusiasts

Let’s	summarize	some	key	points	to	close	this	block:
Types	of	learning:	Supervised	learning	(contains	both	inputs	and	desired	outputs,	and	is

trained	with	a	training	data);	Unsupervised	learning	(only	contains	input	data	that	has	not	been

tagged	or	classified,	and	common	elements	are	identified);	and	Reinforcement	learning	(instead

of	focusing	on	performance,	seeks	a	balance	between	exploration	—	new	knowledge	—	and

exploitation	—	current	knowledge-).
Learning	models:	there	are	many	such	as	basic	regression	(linear,	logistic),	classification	(neural

networks,	naive	bayes,	random	forest…),	cluster	analysis	(k-means,	anomaly	detection…).	Here

you	have	an	infographics	as	cheat	sheet	and	a	video	that	explains	a	little	more	in	detail	7	of

those	models.
As	you	can	see,	Artificial	Neural	Networks	(ANNs)	can	assume	all	three	types	of	learning	and	are

within	the	classification	spectrum.	I’m	not	going	to	go	deeper	into	the	types	inside	each	one,	like

CNN	or	RNN	that	you’ll	see	in	the	next	section,	but	I	do	want	to	share	with	you	an	article	by	Matt

Truck	talking	about	how	far	we	are	from	the	AGI:	Frontier	AI:	How	far	are	we	from	artificial

“general”	intelligence,	really?.	Now	that	we	have	a	solid	base	of	how	DeepMind	and	AlphaGo	works

(Deep	Learning	+	Reinforcement	learning)	another	key	term	comes	out:	transfer	learning.	It’s

about	the	possibility	of	applying	acquired	knowledge	in	some	tasks	to	new	tasks.	DeepMind	is

solving	it	with	PathNet,	a	network	of	trained	neural	networks.	You	have	another	really	interesting
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article	on	this	topic,	with	positive	results	on	the	transfer	knowledge	between	simple	games.

Obviously,	this	extrapolation	to	the	real	world	is	still	science	fiction	but	it’s	a	great	start.
Returning	to	Truck’s	article,	it	lists	really	interesting	different	approaches	to	ANNs	such	as	Recursive

Cortical	Networks	(RCN),	CapNets,	Differentiable	Neural	Computers	(DNC)…	In	short,	fusing

neuroscience	with	AI.	In	the	article	he	names	a	workshop,	“Canonical	Computation	in	Brains	and

Machines”,	where	he	specifically	talks	about	these	topics	and	which	content	is	uploaded	to	YouTube.

I	haven’t	had	time	to	watch	it	entirely	(24	lectures	of	40	minutes…)	but	here	you	have	the	complete

list	(start	with	What	are	the	principles	of	learning	in	newborns?)

TECHNICAL

And	we’ve	reached	the	final	level!	In	this	section	I’m	not	going	to	explain	any	new	concept	in

detail	but	I	recommend	you	different	online	courses,	free	and	paid,	for	you	to	do.	Obviously,

they	are	all	technical	courses,	some	require	programming	experience	and	others	just	a	solid

mathematical	base.	The	important	thing	about	these	courses	is	that	you	acquire	the	knowledge	you

need.	Some	of	you	will	want	to	go	all	the	way	until	you	can	program	an	Alpha	Zero	(as	they	write	in

this	article)	and	others,	as	is	my	case,	understand	the	technological	bases	and	extrapolate	from

there.	Let’s	start!
AI	For	Everyone	—	Andrew	Ng

I	don’t	know	if	you	know	Andrew	Ng,	co-founder	of	Coursera,	director	of	Stanford’s	AI	lab	and	former

Chief	Scientist	at	Baidu.	I	knew	him	from	the	free	book	he	launched	in	Machine	Learning	and	I

recommend	the	course	he	has	launched	in	Coursera,	100%	online	and	free.
AI	is	not	only	for	engineers.	This	non-technical	course	will	help	you	understand	technologies	like

machine	learning	and	deep	learning	and	spot	opportunities	to	apply	AI	to	problems	in	your	own

organization.	You	will	see	examples	of	what	today’s	AI	can	—	and	cannot	—	do.	Finally,	you	will

understand	how	AI	is	impacting	society	and	how	to	navigate	through	this	technological	change.

Google	Machine	Learning

Google	has	a	lot	of	training	content	related	to	TensorFlow.	I	recommend	the	crash	course	of	ML.	On

Youtube	you	have	Machine	Learning	Recipes	with	Josh	Gordon	and	AI	Adventures,	both	also	very

recommendable.	I	advise	you	to	also	go	through	AI	Experiments.
Amazon	Machine	Learning

Recently,	Amazon	Web	Services	has	opened	its	internal	Machine	Learning	courses:	35	online

courses	that	add	up	to	more	than	45	hours.	They	are	totally	free	and	although	they	focus	on

Amazon	technologies,	I	think	they	help	set	a	very	strong	knowledge	base	Machine	and	Deep

Learning.
Udacity

Udacity	began	its	journey	with	an	Artificial	Intelligence	course.	This	course	no	longer	exist	by	itself

but	it’s	integrated	in	what	they	call	Nanodegrees.	I	haven’t	done	any	of	them	yet	but	they	have	one

on	Artificial	Intelligence,	another	on	Deep	Learning	and	a	specific	one	on	Self	Driving	Cars.	Very

powerful.
Udemy

Finally	in	Udemy	you	can	find	3	paid	courses	of	the	same	creators	of	the	course	I	recommended	on

Blockchain:	SuperDataScience.	I	recommend	you	to	start	with	Artificial	Intelligence:
Artificial	Intelligence	A-Z™:	Learn	How	To	Build	An	AI
Deep	Learning	A-Z™:	Hands-On	Artificial	Neural	Networks
Machine	Learning	A-Z™:	Hands-On	Python	&	R	In	Data	Science

I’m	closing	this	block	with	the	cheatsheets	published	by	Stanford	and	with	Altexsoft’s	Machine

Learning	Toolbox.	Very	useful!
I	hope	you	find	this	guide	interesting	and	that	it	will	help	in	your	path	of	knowing	more	about	AI.

Please,	tell	me	about	your	progress	
#365daysof	#AI	#artificialintelligence	#futurism	#technology	#day291

Yann	LeCun,	Facebook:	What	are	the	principles	of	learning	in	newbornsYann	LeCun,	Facebook:	What	are	the	principles	of	learning	in	newborns
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Companies say it best! 
-
When it comes to recruitment, emlyon business school 
and Mines Saint-Etienne benefit from a network of other 
programs and graduates within the health and data 
intelligence industries, including:
Axa, Allianz, Generali, Général Ré, Münich Ré, Swiss Ré, Scor, 
Deloitte, EY, PwC, KPMG , April, IBM, Inova Software, Iqvia, 
Limismart, Lilly, Limagrain, Meersens, Merck, Novonordisk, 
Nutrisens, Samsung, Urgo, CapGemini, MSD Vaccins, Becton 
Dickinson, bioMérieux, Baxter, Visiativ, Alcimed, Bristol 
Myers Squib, Novartis, Sanofi, Unilever, Vifor Pharma…

+ Deborah Pome // Head of Recruitment and Mobility // 
Altran Technologies
-
“I can confirm our company’s recruitment 
requirements for skilled candidates with an 
understanding of the use of artificial intelligence in 
life sciences. We believe that the partnership between 
Mines Saint-Etienne and emlyon business school, 
which has led to the creation of this MSc in Health 
Management & Data Intelligence, is increasingly 
relevant.”

+ Matthieu Ducottet // Head of Innovation // Thuasne
-
“Thuasne’s anticipated recruitment needs include 
candidates with knowledge of healthcare-focused 
artificial intelligence to enhance the skills of its 
development centers. Educational programs on the 
implementation of artificial intelligence and its use 
in the health sector are essential today. Thuasne 
therefore fully supports the joint initiative by Mines 
Saint-Etienne and emlyon business school to create a 
new MSc in Health Management & Data Intelligence.”

+ Philippe Durand // Managing Director // Capio 
(French subsidiary, Swedish group)
-
“I welcome your initiative to create the MSc in 
Health Management & Data Intelligence, which I fully 
support. This undoubtedly responds to the needs 
of our profession and health professionals with 
regard to tackling artificial intelligence issues. It is 
particularly judicious to train our young graduates and 
managers so that they can contribute to our sector’s 
required transformation and help us accelerate this 
transformation in France and Europe.”

+ Marie-José Quentin-Millet // Deputy CEO //  
Sanofi Pasteur
-
“This program will clearly address the challenges 
faced by Sanofi and help train profiles needed by our 
structures to deal with the industry’s current major 
evolutions. Those graduates will need to understand 
the issues at stake and the specific culture of the 
health sector, master technological fundamentals 
and develop change management skills in open and 
collaborative ecosystems.”

11



7,940	views | May	29,	2019,	12:21am

Artificial	Intelligence	In	The

Workplace:	How	AI	Is

Transforming	Your	Employee

Experience
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Bernard	Marr Contributor

Artificial	intelligence	(AI)	is	quickly	changing	just	about	every	aspect	of	how
we	live	our	lives,	and	our	working	lives	certainly	aren’t	exempt	from	this.

Soon,	even	those	of	us	who	don’t	happen	to	work	for	technology	companies
(although	as	every	company	moves	towards	becoming	a	tech	company,	that
will	be	increasingly	few	of	us)	will	find	AI-enabled	machines	increasingly
present	as	we	go	about	our	day-to-day	activities.

	ADOBE	STOCKArtificial	Intelligence	In	The	Workplace:	How	AI	Is	Transforming	Your	Employee	Experience



From	how	we	are	recruited	and	on-boarded	to	how	we	go	about	on-the-job
training,	personal	development	and	eventually	passing	on	our	skills	and
experience	to	those	who	follow	in	our	footsteps,	AI	technology	will	play	an
increasingly	prominent	role.

Here’s	an	overview	of	some	of	the	recent	advances	made	in	businesses	that
are	currently	on	the	cutting-edge	of	the	AI	revolution,	and	are	likely	to	be
increasingly	adopted	by	others	seeking	to	capitalize	on	the	arrival	of	smart
machines.

Recruitment	and	onboarding

Before	we	even	set	foot	in	a	new	workplace,	it	could	soon	be	a	fact	that	AI-
enabled	machines	have	played	their	part	in	ensuring	we’re	the	right	person
for	the	job.

AI	pre-screening	of	candidates	before	inviting	the	most	suitable	in	for
interviews	is	an	increasingly	common	practice	at	large	companies	which
make	thousands	of	hires	each	year,	and	sometimes	attract	millions	of
applicants.

Pymetricsprovides	tools	which	use	a	series	of	"games"	based	on	principles	of
neuroscience	to	assess	candidates	before	they	are	asked	in	for	an	interview.
It	works	by	assessing	cognitive	and	emotional	features	of	the	candidate,
while	specifically	avoiding	demographic	biases	based	on	their	gender,
socioeconomic	status,	or	race.	This	is	done	by	matching	candidates'
performance	against	that	of	existing	employees	who	have	succeeded	in	the
roles	that	are	being	recruited	for.	If	it	finds	that	they	may	not	be	a
particularly	good	fit	for	that	role,	it	might	recognize	another	role	they	would
be	suitable	for	and	recommend	they	instead	apply	for	that	one.

Another	company	providing	these	services	is	Montage,	which	claims	that	100
of	the	Fortune	500	companies	have	used	their	AI-driven	interviewing	tool.	It
enables	businesses	to	carry	out	on-demand	text	interviewing,	automated
scheduling,	and	reduce	the	impact	of	unconscious	biases	on	the	recruitment
process.	 



When	it	comes	to	onboarding,	AI-enabled	chatbots	are	the	current	tool	of
choice,	for	helping	new	hires	settle	into	their	roles	and	get	to	grips	with	the
various	facets	of	the	organizations	they’ve	joined.

Multinational	consumer	goods	manufacturer	Unilever	uses	a	chatbot	called
Unabot,	that	employs	natural	language	processing(NLP)	to	answer
employees'	questions	in	plain,	human	language.	Advice	is	available	on
everything	from	where	they	can	catch	a	shuttle	bus	to	the	office	in	the
morning,	to	how	to	deal	with	HR	and	payroll	issues. 

On-the-job	training

Of	course,	learning	doesn’t	end	once	you’ve	settled	into	your	role,	and	AI
technology	will	also	play	a	part	in	ongoing	training	for	most	employees	in
the	future.

It	will	also	assist	with	the	transfer	of	skills	from	one	generation	to	the	next	–
as	employees	move	on	to	other	companies	or	retire,	it	can	help	to	ensure
that	they	can	leave	behind	the	valuable	experience	they’ve	gained	for	others
to	benefit	from,	as	well	as	take	it	with	them.

Engineering	giant	Honeywellhas	developed	tools	which	utilize	augmented
and	virtual	reality	(AR/VR)	along	with	AI,	to	capture	the	experience	of	work
and	extract	“lessons”	from	it	which	can	be	passed	on	to	newer	hires.

Employees	wear	AR	headsets	while	carrying	out	their	daily	tasks.	These
capture	a	record	of	everything	the	engineer	does,	using	image	recognition
technology,	which	can	be	played	back,	allowing	trainees	or	new	hires	to
experience	the	role	through	VR.

Information	from	the	video	imagery	is	also	being	used	to	build	AR	tools
which	provide	real-time	feedback	while	engineers	carry	out	their	job	–
alerting	them	to	dangers	or	reminding	them	to	carry	out	routine	tasks	when
they	are	in	a	particular	place	or	looking	at	a	particular	object. 

Augmented	workforce



One	of	the	reasons	that	the	subject	of	AI	in	the	workplace	makes	some
people	uncomfortable	is	because	it	is	often	thought	of	as	something	that	will
replace	humans	and	lead	to	job	losses.

However,	when	it	comes	to	AI	integration	today,	the	keyword	is	very	much
"augmentation"	–	the	idea	that	AI	machines	will	help	us	do	our	jobs	more
efficiently,	rather	than	replace	us.	A	key	idea	is	that	they	will	take	over	the
mundane	aspects	of	our	role,	leaving	us	free	to	do	what	humans	do	best	–
tasks	which	require	creativity	and	human-to-human	interaction. 

Just	as	employees	have	become	familiar	with	tools	like	email	and	messaging
apps,	tools	such	as	those	provided	by	PeopleDocor	Betterworkswill	play	an
increasingly	large	part	in	the	day-to-day	workplace	experience.

These	are	tools	which	can	monitor	workflows	and	processes	and	make
intelligent	suggestions	about	how	things	could	be	done	more	effectively	or
efficiently.	Often	this	is	referred	to	as	robotic	process	automation	(RPA).

These	tools	will	learn	to	carry	out	repetitive	tasks	such	as	arranging
meetings	or	managing	a	diary.	They	will	also	recognize	when	employees	are
having	difficulty	or	spending	too	long	on	particular	problems,	and	be	ready
to	step	in	to	either	assist	or	if	the	job	is	beyond	something	a	bot	is	capable	of
doing	itself,	suggest	where	human	help	can	be	found.

Surveillance	in	the	workplace

Of	course,	there’s	a	potential	dark	side	to	this	encroachment	of	AI	into	the
workplace	that’s	likely	to	leave	some	employees	feeling	distinctly
uncomfortable.

According	to	a	Gartner	survey,	more	than	50%	of	companies	with	a	turnover
above	$750	million	use	digital	data-gathering	tools	to	monitor	employee
activities	and	performance.	This	includes	analyzing	the	content	of	emails	to
determine	employee	satisfaction	and	engagement	levels.	Some	companies
are	known	to	be	using	tracking	devices	to	monitor	the	frequency	of
bathroom	breaks,	as	well	as	audio	analytics	to	determine	stress	levels	in
voices	when	staff	speak	to	each	other	in	the	office.



Follow	me	on	Twitter	or	LinkedIn.	Check	out	my	website.

Technology	even	exists	to	enable	employers	to	track	their	staff	sleeping	and
exercise	habits.	Video	game	publisher	Blizzard	Activision	recently	unveiled
plansto	offer	incentives	to	staff	who	let	them	track	their	health	through
Fitbit	devices	and	other	specialized	apps.	The	idea	is	to	use	aggregated,
anonymized	data	to	identify	areas	where	the	health	of	the	workforce	as	a
whole	can	be	improved.	However,	it’s	clear	to	see	that	being	monitored	in
this	way	might	not	sit	particularly	well	with	everyone.

Workplace	analytics	specialists	Humanyzeuse	staff	email	and	instant
messaging	data,	along	with	microphone-equipped	name	badges,	to	gather
data	on	employee	interactions.	While	some	may	consider	this	potentially
intrusive,	the	company	says	that	this	can	help	to	protect	employees	from
bullying	or	sexual	harassment	in	the	workplace.

Workplace	Robots

Physical	robots	capable	of	autonomous	movement	are	becoming
commonplace	in	manufacturing	and	warehousing	installations,	and	are
likely	to	be	a	feature	of	many	other	workplaces	in	the	near	future.

Mobility	experts	Segwayhave	created	a	delivery	robot	which	can	navigate
through	workplace	corridors	to	make	deliveries	directly	to	the	desk.
Meanwhile,	security	robots	such	as	those	being	developed	by	Gamma	2could
soon	be	a	common	site,	ensuring	commercial	properties	are	safe	from
trespassers.

Racing	for	a	space	in	the	office	car	park	could	also	become	a	thing	of	the	past
if	solutions	developed	by	providers	such	as	ParkPlusbecome	commonplace.
Their	robotic	parking	assistants	may	not	match	our	traditional	idea	of	how	a
robot	should	look,	but	consist	of	automated	“shuttle	units”	capable	of
moving	vehicles	into	parking	bays	which	would	be	too	small	for	humans	to
manually	park	in	–	meaning	more	vehicles	can	fit	into	a	smaller	space.



Transforming early makers 
track
-
The transforming early makers track challenges you to 
disrupt existing business models to come up with new 
value systems ahead of 2030 with an innovative learning 
path, directly preparing you for your new profession: 
supporting, managing, contributing to and participating in 
the emergence, deployment, development and diff usion 
of transformation projects using digital technologies as a 
driver for disruption.

Our approach positions you as a “maker”. You will 
work on a project in a competitive and collaborative 
environment, benefi ting from methodological input and 
support:
•  in September, you will join a working group and cluster 

in the health sector;
•  every week will be focused on this project and the 

various activities and initiatives that you will be required 
to carry out: the objective is to make progress by 
proposing disruptive solutions;

•  fi ve series of courses and transversal themes will be 
off ered (design thinking, fast-track projects, market 
intelligence, disruptive competitive positioning, business 
models).

This track has many advantages:
•  you work in a team on topics that interest you;
•  you learn in real situations with regular objectives and 

deliverables;
•  you are supervised by a tutor/coach;
•  you focus on your employability from the outset by 

meeting companies, participating in professional 
workshops and hearing expert testimonials;

•  you quickly learn how to sell and how to sell yourself 
(sales pitch approach).

Courses
-
The challenge of artifi cial intelligence 
& the health sector
•  Innovative project management
•  The healthcare ecosystem
•  Economy and sociology of health
•  Big data and artifi cial intelligence: an introduction
•  Patient-centric ecosystems
•  Health information system
•  Ecosystems and platform business models

Healthcare & artifi cial intelligence
•  Seminars in Saint-Etienne (Mines Saint-Etienne campus 

and CHU – hospital units)
•  Health issues in the workplace
•  Med-tech and digital startups
•  Ethics and policy risks of artifi cial intelligence in 

healthcare
•  Patient data for diagnosis and prevention
•  Interacting with artifi cial intelligence
•  Big data and artifi cial intelligence in healthcare: 

challenges and issues
•  Biomedical devices and sensors
•  “Omics” and nanotechnologies

Soft skills
•  Collective intelligence
•  Change management
•  Intercultural management and negotiation

Asian business environment
•  Sociology of health in China
•  Performance evaluation of healthcare systems
•  Logistics in healthcare
•  Ambient and assisted living
•  Decision support tools in healthcare
•  Smart health technologies
•  In-company project

Transforming early makers 
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If you want the truth, it happened because Anji was feeling lazy. Her AI class wasn't all that 

interesting, nor was it a field she wanted a career in, so there wasn't any reason she could see for 

trying especially hard. So she came up with a project that didn't look like too much work, and she 

picked what looked like the easiest way of doing it. Things just got a little out of hand, after that. 

 

Anji's AI class was taught by a grad student who seemed as bored as her students. It was a 

graduation requirement for programmers, even though everyone knew AIs, as a field, weren't 

going anywhere much. In seventy years of computing nobody yet had designed an AI that passed 

the Turing test, let alone did anything really interesting. No matter the computing power behind 

them, AIs just couldn't be as complex as a human brain; everyone knew that. Anji and her 

classmates still needed to know how to use the little crippleware bots that ran traffic lights and 

production lines, though, and that meant knowing the basics of AI programming. At least well 

enough to pass the final. 

 

So Anji decided to pick the easiest-looking project off the list of options: Design an AI that mimics 

the behavior of a public domain character. There was a list of characters to choose from, mostly 

stuff she'd never heard of. She picked Kermit the Frog because, she figured, there was a ton of 

footage of Kermit, even if it was mostly fifty years old, and she could just feed old TV shows to a 

bot until it started acting enough like Kermit to get her a passing grade. 

 

Only it wasn't that easy. For one thing, the bot was too stupid to understand that it was meant to 

be Kermit. Anji used off-the-shelf open-source language- and image-parsing software, so the bot 

would understand what it what watching, but she had to write a program to key the bot to Kermit 

in particular. It took forever. It was actually a pretty good challenge, writing a program to convince 

the bot that it was Kermit the Frog, that the little fuzzy green thing in the old video was itself—

that it had a self, for that matter. She ended up using concepts and bits of code from the other 

classes she was taking, pulling a few all-nighters at the library with books on AI design, and just 

plain making stuff up in a few places. Her code wasn't anything like elegant, but Anji found herself 

liking the project a lot more than she'd expected to, even as it got harder. 

 

She also found herself liking Kermit a lot more than she'd expected to. Anji had never really 

watched the Muppets before; her parents, like most parents she knew, had treated TV as only 

slightly less corrupting an influence than refined sugar and gendered toys. But The Muppet Show 

was really funny—strange, and kind of hokey, but charming all the same. She ended up watching 

way more of it than she needed just for the project. 

 

Then her friend Brian, who was really into robotics, got wind of what she was doing, and demanded 

the chance to participate. Apparently he had weird, nostalgic parents who'd actually allowed him 

to watch TV as a kid, and what he'd mostly watched was Sesame Street and the Muppets, so the 

chance to make a real live AI-powered Kermitbot was too good to pass up. 

 



Of course, that made more work for Anji. She had finally gotten the bot keyed to Kermit properly, 

so it didn't get confused every time there was another Muppet on screen that looked vaguely 

froggy or was voiced by Jim Henson, and it was sucking down footage at a pretty good clip—luckily 

there was so much to feed it, on top of the movies: hours and hours of TV specials and commercials 

and interviews and even outtakes, all of it in character. But now she had to write a whole new suite 

of programs so the little AI could operate a robot body. Anji started to worry about finishing the 

project by the due date. For that matter, she was getting behind in her other classes, and it would 

be downright embarrassing to do poorly in them because AI design, of all things, was taking up her 

time. 

 

The thing was, her little AI was getting kind of interesting. It had started writing its own code about 

the time she'd gotten it keyed to Kermit properly, which was one of the project requirements, but 

Anji hadn't expected much more than a few badly parsed lines. Nobody else in her class was getting 

more than that, but Anji's AI was producing more code all the time. And weird code, too. Anji 

couldn't really make sense of it, but it was working, apparently: the bot hadn't frozen up or 

crashed, and it wasn't having any trouble parsing the footage Anji fed it. 

 

Brian finished his robot a couple of days after Anji got through the last of the footage. He presented 

it to her proudly, like a cat gives you something really good it's killed and expects your praise for 

it. "Good, isn't he?" Brian asked, beaming at her, and Anji had to admit it was convincing. Brian 

had really gone all out: the little robot was fully articulated ("Enough to play the banjo!" Brian 

pointed out), and perfectly accurate, with plenty of internal memory built in, and a wireless 

charger. It didn't even need to be plugged in to upload Anji's code. Not that most of it was really 

Anji's, anymore. She was starting to wonder if this project wasn't getting away from her a little. 

 

The one change Brian had made, in designing his robot, was to give it eyelids. He said it was creepy 

without them. So when Anji hit the key that uploaded her code, the first sign she had that it had 

worked was when Kermit gave a couple of slow, sleepy blinks. "Oh," he said, sitting up (Anji was 

glad to see she'd done a good job with the movement programs), "hello there." 

 

"Hi, Kermit!" Brian said, all dorkily excited. "I'm Brian. It's really nice to meet you." 

 

He elbowed Anji. "Uh, hi," she said. "I'm Anjali. Anji, really." 

 

"Hello, Anji," Kermit said. "Pleased to meet you. I'm Kermit the Frog," and hey, that sounded 

exactly right. Anji was totally getting an A. 

 

Anji let Brian keep talking to Kermit, and went to check her computer to make sure everything had 

uploaded okay. It looked fine: everything running smooth. Only the bot was still writing new code, 

even as it chatted with Brian. Huh. Anji looked back over at them; Kermit had said something that 

was making Brian laugh really, really hard. Bots weren't supposed to be very god at telling jokes, 

were they? They'd covered that in class: how AIs never really seemed to get how jokes worked, 

and even AIs designed to tell them mostly just produced a sort of unfunny word salad. Maybe 

Kermit was just quoting the jokes from the footage she'd fed him. AIs could mimic like that, 

although if she'd built a bot that could mimic good comic timing she deserved more than just an 

A. 

 

In the weeks that followed, it got harder to treat Kermit like a school project. He spent a lot of his 

time with Brian, who claimed to need to do a bunch of unspecified adjustments to the robot, 

although this mostly seemed to entail Kermit being shown off to all Brian's friends. Anji didn't mind 

it too much, though, because it gave her more time to try and puzzle out Kermit's code, and also 



it meant that Kermit acquired a very small banjo and several sets of little clothes from Muppet 

fans among Brian's friends. And that seemed to make Kermit happy. 

 

That was the freaky thing: Anji had designed a bot that could seem to be happy. She wasn't 

supposed to be able to do that. She was way, way outside the parameters of her project now, into 

territory that people who studied AI for a living hadn't covered anywhere Anji could find. Because 

Kermit could, in fact, make jokes—and if he was mimicking them, the originals weren't in the 

footage Anji had fed him—and he could noodle around on the banjo in a way that sounded nothing 

like the precision of music-playing AIs Anji had heard. And he could also do things that freaked Anji 

out on a deep and meaningful personal level, like the afternoon when Kermit, perched on the edge 

of the bed in Anji's dorm, stopped strumming his banjo and sighed wistfully. 

 

"You know, I sure do miss Fozzie," he announced, and Anji stopped typing mid-keystroke. 

 

"What did you say?" Anji asked, trying not to sound as startled as she felt. 

 

"Oh, it's not that I don't like it here, Anji. You and Brian are awfully nice. But Fozzie's my best friend, 

you know? After a while, you get to miss things. The squeak of a rubber chicken. The smell of 

custard pie on fur. Little things like that." 

 

He sighed again, and went back to strumming his banjo. Anji waited five minutes, excused herself, 

and ran full-tilt across campus to Brian's dorm. 

 

He answered the door, looking concerned. Well, Anji had been hammering on it pretty hard. 

"What's the matter? Is Kermit okay?" 

 

"Brian, I think we invented sentient AI." Anji tried not to sound like she was panicking. She totally 

was, though. "We weren't supposed to invent sentient AI! I was just supposed to get a passing 

grade! Now there's an artificial life-form in my dorm room who plays the banjo!" 

 

"Whoa. Calm down. Why are you freaking out now? Kermit hasn't gotten any more sentient than 

he was last week, has he? And why is it such a big deal if he is?" 

 

"People have been trying to build a sentient AI for like seventy years, Brian. And I knocked one 

together out of spare parts for a freshman project in a class I didn't even want to take!" Anji wasn't 

sure how people were going to react, but she didn't think it would be good. The grad student who 

taught her class would probably be pissed. "No one's going to believe I actually programmed him, 

or that he's really sentient. But he just told me he misses his friend and made a couple of novel 

jokes that made sense, so I'm pretty sure I've created life. And I bet I'm going to get in trouble for 

it." 

 

Brian, damn him, thought she was overreacting. Worse, he thought she was mostly worried about 

her grade. They ended up fighting over it, getting into a yelling match that drew Brian's RA in to 

tell them they were damaging the rest of the floor's calm. Anji really didn't like Brian's RA. 

 

Anji trudged back across campus to her dorm that night in a gloomy frame of mind. Sure, it was 

pretty cool that she had created sentient AI, but she was afraid it would cause more problems than 

she really knew how to handle. There was the issue of convincing people Kermit was really 

sentient, just for starters, and then what was he supposed to do with himself, if people ever 

believed he was for real? He was just a little frog in a big world, when you got down to it. 

 



Lost in her own thoughts, Anji didn't hear the music until she was nearly back to her dorm. When 

the sound finally made its way through her thick skull, she paused outside her door, and just 

listened for a minute. Kermit was singing a song. 

 

It wasn't anything Anji had heard before. The lyrics were sweet and simple, all about looking 

towards the future, and how it was always just a day away. "I won't miss yesterday," Kermit sang, 

"because I can see—tomorrow is waiting for me." He strummed a few more chords on the banjo, 

and fell silent. 

 

Anji pushed the door open. "I liked your song, Kermit," she said. 

 

"Thanks, Anji," Kermit said. "It just kinda came to me, you know? That's why I like singing." 

 

"Yeah," Anji said. She though about her project deadline, three days away, and the other 

homework she wasn't getting done. Then she sat down at her desk and called up a fresh copy of 

the generic AI, the same blank template she'd started from with Kermit, and got to work keying it 

to Fozzie. 

 

She wasn't anything like done, three days later, when it was time to present her project, but she'd 

gotten a lot of good practice with Kermit, and she thought she could have Fozzie up and running 

inside of two weeks. Kermit walked with her to class, carrying his banjo slung across his back, and 

Anji ignored the funny looks they got from the other students passing them. She was busy with a 

sudden, unexpected flurry of guilt: what right, she thought, did she have to show Kermit off to her 

class like—like some kind of show frog? If he was sentient, he deserved better. Just because he 

didn't seem to mind—was, in fact, excited to be performing for an audience—didn't mean that 

Anji was doing the right thing. 

 

But right or wrong, if she didn't show up with something to show for a semester's worth of work, 

her GPA would be toast. Anji felt guilty, but that didn't stop her from being practical. And she could 

hope for allies among her classmates, maybe. Once they saw Kermit, they might understand. 

 

Or she could get in a lot of trouble. That was the thought at the top of her mind as Anji came into 

the classroom, and nervously eyed Malika, the grad student waiting at the front of the room. A 

few other students had already arrived, most of them carrying the tablets or laptops they'd 

demonstrate their own projects with. A few had robots, but theirs were little bug-like creatures or 

wheeled rovers. 

 

To her surprise, Malika brightened as soon as she saw Kermit, and came over to talk to Anji. "You 

did Kermit?" she said, sounding delighted. "Wow, he looks really great. Just like the real thing. Who 

built him?" 

 

"Um," Anji said, already embarrassed to be talking like Kermit wasn't there. "There's something I'd 

like to talk to you about, actually. In private?" 

 

"Sure, sure, after class," Malika said. "I can't wait to see your presentation!" 

 

Somehow, it was worse than if Malika hadn't been interested at all. Kermit looked up at her, 

concern showing on his small green face. "Are you all right, Anji?" 

 

She hadn't known how to talk to Kermit about the problem. And now it seemed like it was too late. 

"Just nervous, that's all," she lied. 



 

"You don't have to be nervous," Kermit said. "I mean, sharing something with an audience for the 

first time is always a little scary, but I've got lots of practice. You don't need to worry about me." 

 

Yes, I do, Anji thought, but she didn't say it. 

 

Kermit didn't seem to be bothered by the fact that the other presentations were all about code 

and AIs and made frequent mention of bots and programming. Anji wished she'd gotten up the 

nerve to talk to him about what, exactly, he thought he was—if he knew he was a robot, if he 

understood he was a sentient AI, if he even got what any of that meant. But she'd been too scared 

to do it, and Brian had been too excited about his new little green friend. She felt miserably like 

she'd betrayed Kermit's trust. 

 

When Kermit's—when Anji's turn came, Kermit strolled down to the front of the room and hopped 

easily onto Malika's desk, settling his banjo on his lap. "Hi-ho everyone," he began. "Kermit the 

Frog here. My friend Anji asked me to put on a show for you. I haven't got the backup I usually 

have—and anyway, I don't think there's room in here for a chicken chorus, or a penguin orchestra, 

or a cannon—but I thought I might sing you a song. I hope you all like it." 

 

The class, who had giggled a little at Kermit's joke, fell quiet as he began to sing. It was the same 

song Anji had heard him working on before, but he'd changed some of the lyrics, and the 

arrangement wasn't quite the same. The new version was a little better, actually, to Anji's ear. She 

looked anxiously at her classmates' faces, at Malika, as Kermit sang the chorus again. He played a 

little flourish on his banjo, sang "Tomorrow is waiting for me" one last time, and strummed a final 

chord. 

 

There was silence in the classroom, for a long moment. Then someone started clapping, and the 

rest of the class joined in, and Anji smiled with relief until she saw that Malika wasn't clapping. She 

looked serious, and thoughtful. 

 

After class, in the empty lecture hall, Malika still looked grave. "Anji, you've put me in kind of a 

difficult position," she said. "You're obviously a talented programmer, but the project 

requirements were pretty clear. You weren't supposed to program a performance, you were 

supposed to get some novel behavior out of your AI." 

 

"Um," said Anji. "This is what I wanted to talk to you about before class, actually. I was kind of 

afraid of this. See, I didn't program that." 

 

"Then who did?" 

 

"No one did! Kermit came up with it on his own. I'm tone-deaf, anyway; I can't write music." 

 

"Aw, I wouldn't say tone-deaf, Anji," Kermit said. "I've heard you humming along a few times. 

Tone-confused, maybe, but I bet with a little practice you could get better." 

 

Malika stared at Kermit. Then she said, "Anji, can I have a minute alone with your—with Kermit?" 

 

Anji looked anxiously down at him. "She just wants to ask you a few questions, I think," she said. 

"Is that okay?" 

 

"No problem," said Kermit. "I interview well." 



 

Anji sat with her back to the wall outside the classroom, the minutes stretching out like taffy. She 

watched the other students passing by, and wondered if any of them had ever managed to get 

themselves into a fix like this. 

 

Well, no. Probably not. None of them had invented sentient AI, after all. That was pretty much a 

one-time thing, unless she got Fozzie off the ground. 

 

Finally, the door opened, and Malika leaned out into the hall. She looked puzzled, like she'd just 

eaten something and wasn't sure yet if she liked the taste. "Okay, either you've spent the last three 

months doing nothing but program in responses to every conceivable question, or he's as close to 

sentient as any AI I've seen. Either way, you must have been seriously slacking off at the beginning 

of the semester, because your early assignments don't reflect this level of dedication. How the hell 

did you do it?" 

 

"It was an accident!" Anji said weakly. "I just kept feeding him footage of Kermit, until he kind of 

was Kermit. I can show you my notes?" 

 

"I think you'd better," Malika said, and stood aside so Anji could come back into the lecture hall. 

 

The next few weeks were confusing, but in a good way. Anji had a truly terrifying meeting with her 

AI professor, which was mitigated a little by Malika going to bat for her. Her professor didn't come 

around as easily—apparently he wasn't a Muppet fan—but Anji's code made his eyebrows go up 

in a promising way, and when they left his office he was already emailing some other AI experts. 

 

Meanwhile, Kermit was becoming something of a star on campus. People were always excited to 

meet him—some because they were meeting what might be a sentient AI, and other just because 

they were meeting Kermit the Frog. Brian started working on the bot for Fozzie, and Anji hit the 

stage where her Fozzie program started writing its own code. This time it was a lot better-

documented, with Malika practically peering over her shoulder as the first lines appeared. 

 

Some friends of Brian's at another school got in touch with her, asking if they could use her keying 

programs to bring Gonzo to life; they apparently had a build team ready to go. Anji said yes. That 

set off a wave of Internet chatter. Up to now, there hadn't really been any media attention—her 

professor wanted to wait until enough experts had met with Kermit and agreed that he was 

sentient. Or "close enough to sentient to fool me," which was his begrudging way of putting it. 

 

But Brian's friends were blogging the whole build process, and the attention they drew eventually 

found its way back to Anji. For the first time, she found herself fielding interview requests, and a 

local news team actually came out in person to film her and Kermit talking to their reporter. 

 

Kermit took the whole thing in stride. Well, he would be used to media attention, Anji figured; he 

had lots of experience dealing with famous people and reporters. When they weren't being 

interviewed, Kermit spent his time playing music, writing in a little notebook, walking around 

campus with Anji and talking to people, hanging out with Brian and his friends. He seemed happy, 

especially when Anji told him Fozzie would be joining them soon. But part of Anji wasn't convinced 

that everything was okay. 

 

Finally, she got up the nerve to talk about it. "Kermit," she asked, "what—exactly what are you?" 

 



He looked up from the sheet of musical notations he was doodling on. "What do you mean, Anji? 

I'm a frog." 

 

"Right, but—frogs look like this." She called up a picture on her laptop, of a real frog. It was 

brownish, and a little slimy-looking. 

 

"Well, obviously, I'm not that kind of frog." 

 

"Then—what kind of frog are you?" 

 

This gave Kermit pause. He didn't say anything for a while, looking down at his small green hands, 

then tipping his head to one side thoughtfully. "Well," he said, "I know I used to be a puppet frog, 

and now I'm a robot frog, but I think I'm still a real frog. I think I always was." 

 

Something inside Anji, some taut string that had been vibrating for weeks, suddenly relaxed. "You 

know what, Kermit?" she said. "That's what I think, too." 

 

"I'm glad, Anji," Kermit said. "Hey, do you want to hear my new song?" 

 

"I'd love to," Anji said. 

 

In the end, it wasn't as bad as Anji thought it would be. There was a fair amount of controversy, 

but most of it was restricted to the realm of very important people who thought about AI for a 

living. Plenty of people were willing to believe that Kermit was sentient, and plenty of people 

thought he was a cleverly programmed hoax. Anji got an offer from Disney World to buy him, 

which she turned down, and Fozzie and Gonzo went live without a hitch. She made her keying 

programs public, so other people could give the rest of the Muppets a chance to be real. 

 

That summer, all the build teams got together for the first time. It was a little chaotic, with the 

programmers talking and laughing and comparing notes, Scooter looking harried as he wandered 

around with a clipboard, trying to check everyone in, the penguins tuning their instruments, 

Sweetums carrying an armload of chickens and Gonzo, five minutes later, in frantic search of 

Camilla. Kermit was at the center of it all, Piggy on his arm, and for the first time he looked 

completely happy. 

 

"Hey Anji!" Kermit called when he caught sight of her. He and Piggy had been talking to a man Anji 

vaguely recognized, an AI expert from a school in the Midwest who'd led the build team for Rowlf. 

He'd been circling the room with a tablet in hand, talking to people, for most of the afternoon. 

 

"What's up, Kermit?" Anji asked. She shot a questioning glance at the AI expert—she thought his 

name might be Andrew. 

 

"Well, my friend Andrew here says he's got a line on an old theater that's for sale. He thinks we 

can raise the money to buy it and fix it up by putting on a show! Isn't that great?" 

 

Andrew looked nervously at her, as if he wanted her approval. A lot of the other builders treated 

her that way, although she'd explained time and again that the whole thing had really been an 

accident. People still acted like she had some strange power to confer sentience on computer 

programs, and possibly also could shoot lightning from her eyes. 

 



But she wasn't planning on striking anyone down with thunderbolts today. "I think that's an 

awesome idea," she said, and Andrew relaxed. 

 

And really, it was. She could see how happy the thought of having a theater again made Kermit, 

and in her head she saw the future unspooling out in front of her: their own theater, a new show 

every night, too many jokes and songs and unprogrammed answers to ever be faked. People would 

believe then, she was pretty sure. They'd just have to come and see. 

 

Anji hummed to herself as she left Kermit and Andrew to their conversation. "I won't miss 

yesterday, because I can see," she sang, only a little off-key. "Tomorrow is waiting for me." 

 

© Copyright 2011 Holli Mintzer 
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Over the past 60 years, there have been  
major advances in many of the scientific and 
technological inputs into drug research  
and development (R&D). For example, 
combinatorial chemistry increased the 
number of drug-like molecules that could be 
synthesized per chemist per year by perhaps 
800-fold during the 1980s and 1990s1–3,  
and greatly increased the size of chemical  
libraries4. DNA sequencing has become over 
a billion times faster since the first genome 
sequence was determined in the 1970s5–7, 
aiding the identification of new drug targets. 
It now takes at least three orders of magni-
tude fewer man-hours to calculate three-
dimensional protein structure via X-ray 
crystallography than it did 50 years ago8,9, 
and databases of three-dimensional protein 
structure have 300 times more entries than 
they did 25 years ago9 (see the RCSB Protein 
Data Bank database website), facilitating the 
identification of improved lead compounds 
through structure-guided strategies. High-
throughput screening (HTS) has resulted 
in a tenfold reduction in the cost of testing 
compound libraries against protein targets 

since the mid-1990s10. Added to this are 
new inventions (such as the entire field of 
biotechnology, computational drug design 
and screening, and transgenic mice) and 
advances in scientific knowledge (such as  
an understanding of disease mechanisms,  
new drug targets, biomarkers and surrogate 
end points).

There have also been substantial efforts  
to understand and improve the management 
of the commercial R&D process. Experience 
has accumulated on why projects overrun11,  
on the factors that influence financial 
returns on R&D investment12–17, on project 
success18 and R&D portfolio manage-
ment19–22, on how to reduce costs by  
outsourcing, and on what is likely to impress 
or worry the regulatory authorities23.

However, in parallel — as many have 
discussed — R&D efficiency, measured 
simply in terms of the number of new 
drugs brought to market by the global bio-
technology and pharmaceutical industries 
per billion US dollars of R&D spending, 
has declined fairly steadily24. We call this 
trend ‘Eroom’s Law’, in contrast to the more 

familiar Moore’s Law (‘Eroom’s Law’ is 
‘Moore’s Law’ backwards). Moore’s Law is a 
term that was coined to describe the expo-
nential increase in the number of transistors 
that can be placed at a reasonable cost onto 
an integrated circuit. This number doubled 
every 2 years from the 1970s to 2010. The 
term is used more generally for technolo-
gies that improve exponentially over time. 
The data in FIG. 1a show that the number 
of new US Food and Drug Administration 
(FDA)-approved drugs per billion US dol-
lars of R&D spending in the drug industry 
has halved approximately every 9 years since 
1950, in inflation-adjusted terms. Part of the 
contrast between Moore’s Law and Eroom’s 
Law is related to the complexity and limited 
current understanding of biological systems 
versus the relative simplicity and higher  
level of understanding of solid-state  
physics25 but, as discussed below, there  
are other important causes.

Although there are difficulties in making 
like-for-like comparisons in R&D spending  
over very long periods, Eroom’s Law has 
been fairly robust. The number of new 
drugs introduced per year has been broadly 
flat over the period since the 1950s, and 
costs have grown fairly steadily24. The slope 
of the line, over 10-year periods at least, 
does not change substantially (FIG. 1b), and 
assumptions about the delay between R&D 
investment and drug approval do not have a 
substantial influence on the overall pattern 
(FIG. 1c). For more details of the data used for 
FIG. 1, and the major assumptions made,  
see Supplementary information S1 (table).

Eroom’s Law indicates that powerful 
forces have outweighed scientific, technical 
and managerial improvements over the past 
60 years, and/or that some of the improve-
ments have been less ‘improving’ than com-
monly thought. The more positive anyone 
is about the past several decades of progress, 
the more negative they should be about the 
strength of countervailing forces. If someone is 
optimistic about the prospects for R&D today, 
they presumably believe the countervailing 
forces — whatever they are — are starting to 
abate, or that there has been a sudden and 
unprecedented acceleration in scientific, 
technological or managerial progress that will 
soon become visible in new drug approvals.

O P I N I O N

Diagnosing the decline in 
pharmaceutical R&D efficiency
Jack W. Scannell, Alex Blanckley, Helen Boldon and Brian Warrington

Abstract | The past 60 years have seen huge advances in many of the scientific, 
technological and managerial factors that should tend to raise the efficiency of 
commercial drug research and development (R&D). Yet the number of new 
drugs approved per billion US dollars spent on R&D has halved roughly every 
9 years since 1950, falling around 80‑fold in inflation‑adjusted terms. There have 
been many proposed solutions to the problem of declining R&D efficiency. 
However, their apparent lack of impact so far and the contrast between 
improving inputs and declining output in terms of the number of new drugs 
make it sensible to ask whether the underlying problems have been correctly 
diagnosed. Here, we discuss four factors that we consider to be primary causes, 
which we call the ‘better than the Beatles’ problem; the ‘cautious regulator’ 
problem; the ‘throw money at it’ tendency; and the ‘basic research–brute force’ 
bias. Our aim is to provoke a more systematic analysis of the causes of the 
decline in R&D efficiency.
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b  Rate of decline over 10-year periods

L
o

g
 (

d
ru

g
s 

p
e

r 
b

il
li

o
n

 U
S

$
)*

–1.0

–0.5

0

0.5

1.0

1.5

2.0

1950 1960 1970 1980 1990 2000 2010

c  Adjusting for 5-year delay in spending impact

N
u

m
b

e
r 

o
f 

d
ru

g
s 

p
e

r 
b

il
li

o
n

 U
S

$
 R

&
D

 s
p

e
n

d
in

g
*

0

1

10

100

1950 1960 1970 1980 1990 2000 2010
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The magnitude and duration of Eroom’s 
Law also suggests that a lot of the things that 
have been proposed to address the R&D pro-
ductivity problem are likely, at best, to have a 
weak effect. Suppose that we found that it cost 
80 times more in real terms to extract a tonne 
of coal from the ground today than it did 
60 years ago, despite improvements in mining  
machinery and in the ability of geologists 
to find coal deposits. We might expect coal 
industry experts and executives to provide 

explanations along the following lines: “The 
opencast deposits have been exhausted and 
the industry is left with thin seams that are 
a long way below the ground in areas that 
are prone to flooding and collapse.” Given 
this analysis, people could probably agree 
that continued investment would be justified 
by the realistic prospect of either massive 
improvements in mining technology or large 
rises in fuel prices. If neither was likely, it 
would make financial sense to do less digging.

However, readers of much of what has 
been written about R&D productivity in 
the drug industry might be left with the 
impression that Eroom’s Law can simply be 
reversed by strategies such as greater man-
agement attention to factors such as project 
costs and speed of implementation26, by 
reorganizing R&D structures into smaller 
focused units in some cases27 or larger units 
with superior economies of scale in others28, 
by outsourcing to lower-cost countries26,  
by adjusting management metrics and 
introducing R&D ‘performance score-
cards’29, or by somehow making scientists 
more ‘entrepreneurial’30,31. In our view, these 
changes might help at the margins but it 
feels as though most are not addressing  
the core of the productivity problem.

There have been serious attempts to 
describe the countervailing forces or to 
understand which improvements have been 
real and which have been illusory. However, 
such publications have been relatively 
rare. They include: the FDA’s ‘Critical Path 
Initiative’23; a series of prescient papers by 
Horrobin32–34, arguing that bottom-up  
science has been a disappointing distraction;  
an article by Ruffolo35 focused mainly on 
regulatory and organizational barriers;  
a history of the rise and fall of medical inno-
vation in the twentieth century by Le Fanu36; 
an analysis of the organizational challenges 
in biotechnology innovation by Pisano37; 
critiques by Young38 and by Hopkins et al.39, 
of the view that high-affinity binding of a 
single target by a lead compound is the best 
place from which to start the R&D process; 
an analysis by Pammolli et al.19, looking at 
changes in the mix of projects in ‘easy’ versus 
‘difficult’ therapeutic areas; some broad-
ranging work by Munos24; as well as a  
handful of other publications.

There is also a problem of scope. If we 
compare the analyses from the FDA23, 
Garnier27, Horrobin32–34, Ruffolo35, Le Fanu36, 
Pisano37, Young38 and Pammolli et al.19, there 
is limited overlap. In many cases, the differ-
ent sources blame none of the same counter-
vailing forces. This suggests that a more 
integrated explanation is required.

Seeking such an explanation is important 
because Eroom’s Law — if it holds — has 
very unpleasant consequences. Indeed, 
financial markets already appear to believe 
in Eroom’s Law, or something similar to it, 
and the impact is being seen in cost-cutting 
measures implemented by major drug com-
panies. Drug stock prices indicate that inves-
tors expect the financial returns on current 
and future R&D investments to be below 
the cost of capital at an industry level40, and 

Figure 1 | Eroom’s Law in pharmaceutical R&D. a | The number of new drugs approved by the US 
Food and Drug Administration (FDA) per billion US dollars (inflation‑adjusted) spent on research 
and development (R&D) has halved roughly every 9 years. b | The rate of decline in the approval of 
new drugs per billion US dollars spent is fairly similar over different 10‑year periods. c | The pattern 
is robust to different assumptions about average delay between R&D spending and drug approval. 
For details of the data and the main assumptions, see Supplementary information S1 (table) and 
REFS 24,86,87. Note that R&D costs are based on the Pharmaceutical Research and Manufacturers 
of America (PhRMA) Annual Survey 2011 (REF. 86) and REF. 87. PhRMA is a trade association that 
does not include all drug and biotechnology companies, so the PhRMA figure understates R&D 
spending at an industry level. The total industry expenditure since 2004 has been 30–40% higher 
than the PhRMA members’ total expenditure, which formed the basis of this figure. The new drug 
count, however, is the total number of new molecular entities and new biologics (applying the same 
definition as Munos24) approved by the US FDA from all sources, not just PhRMA members. We have 
estimated real‑term R&D cost inflation figures from REFS 24,87. The overall picture seems to be fairly 
robust to the precise details of cost and inflation calculations. Panel a is based on a figure that origi‑
nally appeared in a Bernstein Research report (The Long View — R&D productivity; 30 Sep 2010). 
*Adjusted for inflation. PDUFA, Prescription Drug User Fee Act. 
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would prefer less R&D and higher dividends. 
Investors may well be wrong about this. 
However, they have less reason to be biased 
towards optimism about the likelihood of 
Eroom’s Law being successfully counteracted 
than those who are working in the industry, 
or those who sell consulting services to the 
industry. Shareholders ultimately appoint 
executives and control resource allocation, 
so their perceptions matter. It is likely that 
Pfizer, Merck & Co., AstraZeneca and Eli 
Lilly will be spending less — in nominal 
terms — in 2015 than they did in 2011, partly 
in response to shareholder pressure. Across 
the top ten large pharmaceutical companies, 
it seems that nominal R&D spending will be 
flat until 2015, which represents a decline in 
real terms. More importantly, the combined 
effect of declining real-term R&D spending  
with Eroom’s Law (fewer new drugs per 
billion US dollars of R&D investment over 
time) is that there will be fewer new drugs 
and/or drugs will become inordinately 
expensive. This will threaten the huge  
benefits41,42 that follow from the availability  
of effective and affordable new drugs.

In our view, avoiding such an outcome 
requires a more systematic analysis of  
the factors that underlie Eroom’s Law.  
We think that any serious attempt to explain 
Eroom’s Law should try to address at least 
two things: the progressive nature of the 
decline in the number of new drugs per  
billion US dollars of R&D spending, and the 
scale (~80-fold) of the decline. In this article,  
we make some suggestions. We realize that 
the industry is heterogeneous, so our gen-
eralizations will be wrong in many cases. 
We appreciate the intellectual effort that has 
been made by others on analysing the prob-
lems of R&D productivity. We note that our 
chosen measure of R&D efficiency is based 
on cost per new drug approved. This does 
not account for the huge variation in the 
medical and financial value of new drugs. 
A few breakthrough drugs — for example, 
a highly effective Alzheimer’s disease treat-
ment — could have much greater medical 
and financial value than a larger number of 
new drugs that provide only modest incre-
mental benefits. We also note that the very 
long cycle time for drug R&D means that 
our productivity measure is a lagging  
indicator; perhaps things have improved, 
but the result is not yet visible.

However, with the aim of prompting 
debate and analysis, here we discuss what 
we consider to be the four primary causes 
of Eroom’s Law: the ‘better than the Beatles’ 
problem; the ‘cautious regulator’ problem; 
the ‘throw money at it’ tendency; and the 

‘basic research–brute force’ bias. There may 
also be some contribution from a fifth factor, 
termed ‘the low-hanging fruit’ problem, but 
we consider this to be less important.

Primary causes
The ‘better than the Beatles’ problem. 
Imagine how hard it would be to achieve 
commercial success with new pop songs 
if any new song had to be better than the 
Beatles, if the entire Beatles catalogue was 
available for free, and if people did not  
get bored with old Beatles records.  
We suggest something similar applies to  
the discovery and development of new 
drugs. Yesterday’s blockbuster is today’s 
generic. An ever-improving back catalogue 
of approved medicines increases the com-
plexity of the development process for new 
drugs, and raises the evidential hurdles for 
approval, adoption and reimbursement.  
It deters R&D in some areas, crowds R&D 
activity into hard-to-treat diseases and 
reduces the economic value of as-yet-
undiscovered drugs. The problem is  
progressive and intractable.

Few other industries suffer from this 
problem. In the example of the coal indus-
try noted above, the opencast deposits are 
mined first. However, the coal is burnt, 
which increases the value of the coal that 
is still in the ground. In most intellectual 
property businesses (for example, fashion or 
publishing), people get bored with last year’s 
creations, which maintains demand for 
novelty. Unfortunately for the drug industry, 
doctors are not likely to start prescribing 
branded diabetes drugs because they are 
bored with generic metformin.

Anti-ulcerants — still a very valuable 
therapeutic area in terms of revenues — pro-
vide an example of the shadow that is cast by 
successful drugs. A class of anti-acid agents 
known as potassium-competitive acid block-
ers, such as soraprazan (now discontinued), 
would probably be safe and effective anti-
ulcerants, and 15 years ago they could have 
been blockbusters. The problem today is that 
there are now two classes of highly effective 
and safe anti-ulcer drugs on the market: 
the histamine H2 receptor antagonists (for 
example, generic ranitidine, which is avail-
able over the counter) and the proton pump 
inhibitors (for example, generic esomepra-
zole and several others). Any sensible health-
care system would only pay for patients to 
receive a new branded potassium-competitive 
acid blocker if they fail to respond to a 
cheap generic proton pump inhibitor and/
or H2 receptor antagonist, but such patients 
are a very small proportion of the total 

population. This general problem applies  
in diabetes, hypertension, cholesterol  
management and many other indications.

Pammolli et al.19 have provided a quan-
titative illustration of the ‘better than the 
Beatles’ problem. Their analysis compared 
R&D projects started between 1990 and 
1999 with those started between 2000 and 
2004. Attrition rates rose during the latter  
period. However, the increase could be 
largely explained by a shift in the mix of 
R&D projects from commercially crowded 
therapeutic areas in which historic drug 
approval probabilities were high (for example, 
genitourinary drugs and sex hormones) 
to less crowded areas with lower historical 
approval probabilities (for example, antineo-
plastics and immunomodulatory agents).

There is another related potential cause 
of Eroom’s Law that has frequently been 
put forward, termed the ‘low-hanging fruit’ 
problem, which results from the progressive 
exploitation of drug targets that are more 
technically tractable43. To be clear, the  
‘low-hanging fruit’ problem argues that  
the easy-to-pick fruit has gone, whereas the  
‘better than the Beatles’ problem argues that 
the fruit that has been picked reduces the 
value of the fruit that is left in the tree.

In our opinion, the ‘low-hanging fruit’ 
problem is less important than the ‘better 
than the Beatles’ problem. First, estimates 
of the number of potential drug targets44,45 
versus the number of drugged targets46 sug-
gest that many decades-worth of new targets 
remain if the industry continues to exploit 
four or five new targets each year. It is also 
becoming clear that many drugs may derive 
their therapeutic benefit from interactions 
with multiple proteins rather than a single 
target. These drugs are ‘magic shotguns’ 
rather than ‘magic bullets’47. If this turns out 
to be more generally true, then worrying  
about the ‘low-hanging fruit’ problem would 
be similar to worrying that a shortage of 
notes is threatening the future of music 
composition. In our view, the ‘low-hanging 
fruit’ explanation is sometimes tautological 
as ‘technically easy’ tends to be equated with 
‘already discovered’48. Indeed, investigation 
of the history of drug discovery suggests that 
there was little easy or obvious about some 
of the great discoveries of the 1940s and 
1950s, such as the anti-inflammatory effects 
of corticosteroids, the psychiatric effects of 
imipramine or lithium, or the antibacterial 
properties of penicillin36,49–51.

The ‘cautious regulator’ problem. Progressive 
lowering of the risk tolerance of drug regu-
latory agencies obviously raises the bar for 
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the introduction of new drugs, and could 
substantially increase the associated costs 
of R&D52. Each real or perceived sin by the 
industry, or genuine drug misfortune, leads 
to a tightening of the regulatory ratchet, and 
the ratchet is rarely loosened, even if it seems 
as though this could be achieved without 
causing significant risk to drug safety. For 
example, the Ames test for mutagenicity may 
be a vestigial regulatory requirement; it prob-
ably adds little to drug safety but kills some 
drug candidates. Furthermore, for most of 
the past 60 years large and sophisticated drug 
companies may not have been disappointed 
to see the regulatory ratchet tighten because 
it reduced competition.

It also seems that the concern that drug 
companies could cheat the system in some 
way has led the cautious regulator to apply 
an audit-based approach to regulatory 
documentation, as the more demanding the 
reporting requirements are, the harder it is to 
cheat without leaving some kind of error or 
inconsistency in what is reported. The scale 
of reporting was summarized recently by 
the Chief Scientific Officer of Novo Nordisk 
in the company’s third quarter 2011 results 
conference call with respect to the submis-
sion to the FDA of data on two new insulin 
therapies: “If printed and stacked, the many 
million pages of documentation, with a total 
of 9 million electronic links, [would] exceed 
the height of [the] Empire State Building.”

The impact of the ‘cautious regulator’ 
problem on Eroom’s Law is apparent in  
FIG. 1. First, it shows R&D efficiency dipping  
in the early 1960s following the 1962 
Kefauver Harris Amendment to the Federal 
Food, Drug, and Cosmetic Act, which was 
introduced in the wake of the thalidomide 
drug safety disaster. For the first time, medi-
cines had to demonstrate efficacy, and the 
safety hurdles were also raised. This reduced 
financial returns on R&D for a decade or 
so12,14, before rising drug prices outstripped 
R&D cost inflation and increased financial 
returns in the 1970s15. Interestingly, FIG. 1 also 
shows a rise in R&D efficiency in the mid to 
late 1990s, which is likely to be due to two 
regulatory factors: primarily the clearing of 
a regulatory backlog at the FDA following 
the implementation of the 1992 Prescription 
Drug User Fee Act (PDUFA), but also a small 
contribution from the rapid development 
and approval of several HIV drugs. In the 
case of HIV drugs, organized and politically 
astute lobbying effectively lowered the  
normal regulatory hurdles53.

The ‘cautious regulator’ problem fol-
lows, in part, from the ‘better than the 
Beatles’ problem, as the regulator is more 

risk-tolerant when few good treatment 
options exist; or, put another way, the avail-
ability of safe and effective drugs to treat 
a given disease raises the regulatory bar 
for other drugs for the same indication. 
Although the ‘cautious regulator’ problem 
is tractable in principle, it is hard to see the 
regulatory environment relaxing to any 
great extent. Society may be right to prefer 
a tougher regulator, even if it means more 
costly R&D. Drug safety matters. And 
although the 1950s and 1960s may be viewed 
by some as a golden age in terms of thera-
peutic innovation36,48,54, it seems unlikely 
that the severe adverse outcomes for many 
patients taking part in clinical trials during 
this period36 would be acceptable today.

The ‘throw money at it’ tendency. The 
‘throw money at it’ tendency is the tendency 
to add human resources and other resources 
to R&D, which — until recent years — has 
generally led to a rise in R&D spending 
in major companies, and for the industry 
overall. It is probably due to several factors, 
including good returns on investment in 
R&D for most of the past 60 years, as well as 
a poorly understood and stochastic innova-
tion process that has long pay-off periods.  
In addition, intense competition between 
marketed drugs (where being second or 
third to launch is often worth less than 
being first) provides a rationale for investing 
additional resources to be the first to launch. 
There may also be a bias in large companies 
to equate professional success with the size 
of one’s budget.

Unfortunately for people working in 
R&D today, tackling the ‘throw money  
at it’ tendency looks feasible. Investors and 
many senior executives think that a lot  
of costs can be cut from R&D without  
reducing output substantially. Whether this 
is correct remains to be seen, although if so, 
it may be the single strategy most likely to 
counteract Eroom’s Law in the short term. 
The risk, however, is that the lack of under-
standing of factors affecting return on R&D 
investment that contributed to relatively 
indiscriminate spending during the good 
times could mean that cost cutting is simi-
larly indiscriminate. Costs may go down, 
without resulting in a substantial increase  
in productivity.

The ‘basic research–brute force’ bias. The 
‘basic research–brute force’ bias is the ten-
dency to overestimate the ability of advances 
in basic research (particularly in molecular 
biology) and brute force screening methods  
(embodied in the first few steps of the 

standard discovery and preclinical research 
process) to increase the probability that a 
molecule will be safe and effective in clinical 
trials (FIG. 2). We suspect that this has been 
the intellectual basis for a move away from 
older and perhaps more productive  
methods for identifying drug candidates32–34.  
It should be noted that many of our com-
ments are more relevant to small-molecule 
drugs, although the data used for FIG. 1 also 
include biologics.

FIGURE 2 illustrates the standard model of 
most drug R&D. It is — effectively — a serial 
search, filter and selection process. Scientific 
and technical advances have, superficially 
at least, increased the breadth of the funnel 
(that is, more potential targets have been 
identified, and more drug-like molecules 
have been synthesized). They have improved 
the filtering efficiency by several orders of 
magnitude (for example, HTS versus testing 
in expensive and low-throughput animal 
models). They should also have increased 
the quality of filtering and selection (for 
example, the use of pathway analysis for tar-
get selection, the use of transgenic mice for 
target validation and the use of accumulated 
experience to favour molecules that would 
be likely to have good ADMET (absorption, 
distribution, metabolism, excretion and  
toxicology) characteristics).

The cumulative effect of improvements in 
these early steps should have been a higher 
signal-to-noise ratio among drug candidates 
entering clinical trials; that is, the candidates 
chosen should have had a greater likelihood 
of successfully demonstrating effective-
ness and safety in these trials. This, in turn, 
should have increased R&D efficiency, 
given that most of the costs of new drug 
development are related to the costs of failed 
projects22. Yet the probability that a small-
molecule drug successfully completes clini-
cal trials has remained more or less constant 
for 50 years21, and overall R&D efficiency 
has declined24.

So how can some parts of a process 
improve dramatically, yet important meas-
ures of overall performance remain flat or 
decline? There are several possible explana-
tions, but it seems reasonable to wonder 
whether companies industrialized the wrong 
set of activities34,36,38. At first sight, R&D was 
more efficient several decades ago (FIG. 1), 
when many research activities that are 
today regarded as critical (for example, the 
derivation of genomics-based drug targets 
and HTS) had not been invented, and when 
other activities (for example, clinical science, 
animal-based screens and iterative medicinal 
chemistry) dominated.
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There have been several interesting  
critiques of modern research33,48,55, but here 
we highlight two potential problems. First, 
much of the pharmaceutical industry’s R&D 
is now based on the idea that high-affinity 
binding to a single biological target linked 
to a disease will lead to medical benefit 
in humans39. However, if the causal link 
between single targets and disease states is 
weaker than commonly thought38,56, or if 
drugs rarely act on a single target, one can 
understand why the molecules that have 
been delivered by this research strategy into 
clinical development may not necessarily be 
more likely to succeed than those in earlier 
periods.

Indeed, drug-like small molecules tend 
to bind promiscuously, and this sometimes 
turns out to have an important role in their 
efficacy47,57 as well as their so-called off-
target effects39. Targets are parts of complex 
networks leading to unpredictable effects58, 
and biological systems show a high degree of 
redundancy, which could blunt the effects of 
highly targeted drugs56,57. Perhaps this helps 
to explain why the R&D process was more 
cost-effective several decades ago (FIG. 2), 
when expensive labour-intensive animal 
models — rather than cheap automated 
molecular assays — formed the basis of  
initial drug screening36,49–51,59.

More recent analysis also points to a 
similar conclusion. More first-in-class 
small-molecule drugs approved between 
1999 and 2008 were discovered using 
phenotypic assays than using target-based 
assays60. Drugs approved during this period 
would have been discovered when screening 
activity was dominated by the target-based 
approach, so one might have expected 
more target-based discoveries. Perhaps 

target-based approaches are efficient for  
pursuing validated therapeutic hypotheses 
but are less effective in the search for innova-
tive drugs that have a better chance of  
clearing the ‘better than the Beatles’ barrier.

The second potential problem follows 
from the nature of chemical space and a shift 
from iterative medicinal chemistry coupled 
with parallel assays (pre-1990s) to serial 
filtering that begins with HTS of a static 
compound library against a target. Directed 
iteration — even if each cycle is slow — may 
be a much more efficient way of searching a 
large and high-dimensional chemical space 
than fast HTS of a predefined collection of 
compounds (BOX 1).

As an aside, biologics have had a higher 
success rate than small molecules once 
they leave research and enter clinical trials. 
There was an approximately 32% approval 
rate for biologics versus an approximately 
13% approval rate for small-molecule drugs 
first tested in humans between 1993 and 
2004 (REF. 21). This may not be surprising 
for copies or close analogues of endogenous 
signalling molecules (for example, insulins, 
erythropoietins or growth hormones) or for 
agents that replace dysfunctional proteins 
(for example, clotting factors, lysosomal 
enzymes, and so on). The high rates of 
success in clinical trials of monoclonal 
anti bodies (and related fusion proteins) is 
perhaps more notable61. One might expect 
them to suffer from the same kind of prob-
lems with single-target efficacy as small mol-
ecules (albeit with fewer off-target effects). 
However, they have opened up new sets of 
therapeutic targets, which may suffer less 
from the ‘better than the Beatles’ problem. 
Perhaps their success is also a function of 
their limited target set — either cell surface 

proteins or protein-based extracellular 
signalling molecules. In both cases, the 
chain of causality between target binding 
and therapeutic effect is relatively short. 
Out of 34 monoclonal antibodies or other 
targeted biologics (such as fusion proteins 
or aptamers) that have been approved by 
the FDA, 13 target white blood cell-specific 
antigens (for example, CD20) and are used 
for haematological cancers or immunosup-
pression; three target receptors in the human 
epidermal growth factor receptor family and 
are used in oncology; seven target tumour 
necrosis factor or interleukins and are used 
for immunomodulation in autoimmune 
diseases; and four target vascular endothelial 
growth factor variants and are used in oncol-
ogy or ophthalmology.

In our view, there are several reasons 
why the ‘basic research–brute force’ bias 
has come to dominate drug research. First, 
by the early 1980s there was already a sense 
that the pace of pharmaceutical innovation 
was slowing. The ‘cautious regulator’ prob-
lem was an obvious drag52,54,62. The ‘better 
than the Beatles’ problem was starting to 
emerge, with complaints that new drugs had 
only modest incremental benefit over what 
was already available62. There were concerns 
about the ‘low-hanging fruit’ problem, 
with a growing sense that the industry had 
started to run out of good animal models  
to screen drugs for still poorly treated 
diseases52,62.

Second, the ‘basic research–brute force’ 
bias matched the scientific zeitgeist48, par-
ticularly as the older approaches for early-
stage drug R&D seemed to be yielding less. 
What might be called ‘molecular reduction-
ism’ has become the dominant stream in 
biology in general, and not just in the drug 

Figure 2 | How can some parts of the R&D process improve, yet the 
overall efficiency decline? Dramatic improvements in brute force 
screening methods and basic science should have tended to increase the 
efficiency of the research process (more leads tested against more tar‑
gets, at a lower cost; shown in gold) and raised its quality (better targets 
as disease pathways and mechanisms are understood, better leads that 
avoid old mistakes surrounding ADMET (absorption, distribution, metab‑
olism, excretion and toxicity) characteristics, and so on). This, in turn, 

should have increased the probability that molecules would succeed in 
the clinic (shown in red), which in turn should have increased overall  
efficiency, as research and development (R&D) costs are dominated by 
the cost of failure. However, the probability that a small molecule  
successfully completes clinical trials has remained more or less constant 
for 50 years21, whereas overall R&D efficiency has declined24. One pos‑
sible explanation for this is that much of the industry industrialized and 
‘optimized’ the wrong set of R&D activities.
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industry33,34,55: “Since the 1970s, nearly all 
avenues of biomedical research have led to 
the gene”63. Genetics and molecular biology 
are seen as providing the ‘best’ and most 
fundamental ways of understanding biologi-
cal systems, and subsequently intervening 
in them64. The intellectual challenges of 
reductionism and its necessary synthesis 
(the ‘-omics’) appear to be more attractive to 
many biomedical scientists than the messy 
empiricism of the older approaches.

Third, the ‘basic research–brute force’ 
bias matched the inclination of many com-
mercial managers, management consult-
ants and investors. The old model, based 
on iterative medicinal chemistry, animal-
based screening and clinical science was 
seen as “too dependent on either inefficient 
trench-warfare type of slog or the unpre-
dictable emergence of seemingly capricious 
geniuses like James Black, Paul Janssen, 
Daniel Bovet, Gertrude Elion, or Gerald 
Hitchings”33. Automation, systematization 
and process measurement have worked in 
other industries. Why let a team of chemists 
and biologists go on a trial and error-based 
search of indeterminable duration, when 
one could quickly and efficiently screen mil-
lions of leads against a genomics-derived 
target, and then simply repeat the same 
industrial process for the next target, and 
the next? In the early 1990s, few companies 
thought they could thrive or survive without 
moving towards a drug discovery process 
based on HTS and the products of the 
human genome.

Here, we are reminded of a debate25 about 
improving clinical trial efficiency, triggered 
by an editorial by Andy Grove65, the former  
Chief Executive of Intel — a man with 
personal experience of Moore’s Law. Grove 
noted the “disappointing output” of R&D 
in the drug industry and made suggestions 
to radically change clinical trials by making 
more use of electronic health data65. Some 
biomedical scientists probably find Grove’s 
intervention irritating, given the simplicity 
and predictability of semiconductor physics  
versus “biology’s mysteries”25. However, 
shareholders and taxpayers have been 
persuaded to fund a lot of R&D because 
biomedical scientists (and drug industry 
executives) have told them that — thanks 
to molecular reductionism — it would soon 
become more predictable63, more productive 
and less mysterious.

We think that the ‘basic research–brute 
force’ bias is supported by survivor bias 
among R&D projects. This makes drug  
discovery and development sound more pro-
spectively rational than it really is. Nearly all  

Box 1 | Directions in small-molecule drug discovery

The 1990s saw a major shift in small-molecule drug discovery strategies, from iterative 
low-throughput in vivo screening and medicinal chemistry optimization to target-based 
high-throughput screening (HTS) of large compound libraries. At first sight, the former is slow  
and expensive in terms of the number of compounds that can be tested, whereas the latter is  
fast and cheap59. However, the topography of chemical space and the nature of industrialized 
drug discovery may conspire to make the second approach less productive. The problem is not 
necessarily HTS per se (the pros and cons of which are actively debated79); rather, it may be the 
research processes that new technologies helped to cement.

First, real-world compound libraries for HTS cover infinitesimally small and somewhat 
redundant regions of chemical space, which is vast; it has been suggested that there could be 
between 1026 and 1062 (REFS 80,81) chemotypes that would comply with the Lipinski guidelines  
for oral drugs82, and each chemotype has a large number of potential derivatives. By contrast, a 
typical corporate screening collection for HTS contains around 106 chemical entities and perhaps 
103 chemotypes. Furthermore, mergers have revealed that different companies’ compound 
libraries often substantially overlap. This is not surprising: companies generated their libraries in 
similar ways, as they used clustered sets of molecules from similar historical campaigns; there is  
a limited set of commercially available reagents; and a relatively small number of reactions are 
amenable to high-throughput automated synthesis.

Second, it has proved to be difficult to design systems that reward people for producing ‘good’ 
hits and leads rather than ‘more’ hits and leads. Collections are biased towards developable 
compounds with acceptable ADME (absorption, distribution, metabolism and excretion) 
characteristics. Companies want measurable developability benchmarks. There are few 
immediate prizes for chemical or biological novelty. The pre-selection and pre-design of 
screening collections means that the lead structures are largely foreseen. It provides no easy  
way to jump from local chemical optima to something better.

Third, the process to whittle down a few thousand HTS hits into a couple of qualified leads has 
been dominated by molecules that win on potency measures. Selection is based on serial assays, 
with most molecules failing at each step. There is no practical way to view the full biological 
profile of all hits at an early stage. Hits with merely adequate target potency but with other 
potentially attractive features (such as good ADME, other interesting biological properties, and 
so on) could be thrown away. This further focuses the search process on small parts of screening 
collections. It may even focus the search process on a suboptimal part of the screening collection. 
Recent research suggests that there is a negative correlation between in vitro potency and 
desirable ADME and toxicology83. Given these features of HTS in the real world, we should expect 
different drug companies to produce similar molecules for a given target. We should also expect 
these molecules to reflect local optima within the screening collections, rather than global 
optima from the much larger chemical universe.

Before the 1990s, however, the standard approach for small-molecule drug discovery involved 
synthesizing and screening a relatively small number of compounds. There would be a few tens  
of molecules (often fewer) in active assessment at any one time, and perhaps 1,000 molecules 
synthesized by a team of chemists during a 5-year project. The search usually started with a 
molecule that was known, or suspected, to have promising pharmacology but perhaps with poor 
ADME characteristics: adrenaline led to the development of beta blockers, and histamine lead to 
the development of cimetidine. Phenomenological screening was also used, to a small extent,  
to provide starting points. Each molecule was then assessed in a range of concurrent assays (often 
in vivo59, considering potency, ADME, toxicity, selectivity and so on). Molecules were then modified 
(or discarded) depending on the results of the assays. The cycle was repeated, with the biological 
results being used to establish structure–activity relationships for each assay and thus advance the 
structures of lead compounds through the chemical space until one or two compounds met the 
multiple criteria necessary for progression into clinical trials. Unlike the screening case, after a few 
iterations one had compounds specifically customized to a particular target, with structures that 
would not have been foreseen at the start of the process. This approach prevented trial compounds 
from being confined to minor local optima. It facilitated what Sir James Black called “obliquity”84 — 
the art of looking for one thing and finding something else. It made it less likely that competitors 
had identical drugs. Remarkably, the search for blockbuster drugs using this method was often 
achieved with fewer than 1,000 compounds.

This is a profoundly different search strategy to the one that was industrialized, but one that may 
be more efficient when there is a very large number of items arranged in a high-dimensional space, 
as is the case with drug-like molecules (see Supplementary information S2 (box)). This is because  
it is possible to traverse large regions of a high-dimensional space with a small number of steps85, 
whereas any static, predefined compound library will cover only a tiny part of the chemical space. 
Perhaps this is part of the explanation of the pre-1990s productivity? These kinds of arguments are 
not lost on the drug industry. Efforts are underway to try to combine some of the obvious 
advantages of HTS with the advantages of small teams dedicated to a broader exploration of the 
biological profiles of a set of evolving lead compounds. The idea is to analyse several structure–
activity relationships in parallel (for example, potency at the target, potency at likely toxicity sites, 
potency in cellular assays, in vivo ADME) to direct rapid, sometimes automated, iterative chemistry.
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drugs are sold with a biological story that 
sounds like molecular reductionism and that 
sometimes, but not always, turns out to be 
true: for example, “drug x works by binding  
receptor a, which influences pathway b, 
which adjusts physiological process c,  
which alleviates disease d.” Such stories get 
confused with prediction because we hear 
very little about the vast majority of the 
other projects that were also initiated on the 
basis of high-affinity binding of a plausible 
candidate to a plausible target, and that had 
similarly plausible biological stories until the 
point at which they failed in development  
for unexpected reasons.

It would be interesting to see how well 
prospective estimates of plausibility cor-
related with subsequent attrition. This 
point is illustrated by the anticancer drug 
iniparib. Attendees of the 2010 meeting of 
the American Society of Clinical Oncology 
(ASCO), or readers of the New England 
Journal of Medicine66, could have been 
forgiven for believing that iniparib had a 
spectacular effect on metastatic breast can-
cer in a Phase II trial because it inhibited a 
specific target, poly(ADP-ribose) polymer-
ase 1 (which is involved in DNA repair), 
and therefore potentiated chemotherapy. 
However, the following year, Phase III trial 
results presented at the 2011 ASCO meeting 
indicated that iniparib did not work very 
well in breast cancer67, and it did not seem to 
inhibit poly(ADP-ribose) polymerase 1 very 
much either68.

Fortunately, the ‘basic research–brute 
force’ issue is tractable in several ways. First, 
in a handful of therapeutic areas the research 
process does appear to be delivering better  
systems-level insights, better targets (or 
sets of targets) and better candidate drugs. 
Oncology is the most obvious example.  
It is hard to look at the genesis of drugs like 
crizotinib69, vemurafenib70 or vismodegib71 
and think that one is simply looking at ran-
dom survivors. Furthermore, in oncology 
the regulator is less cautious and the back 
catalogue of approved drugs is far from 
‘Beatle-esque’. One or two other disease areas 
with simple genetics may perhaps resemble 
oncology. Second, more emphasis could be 
put on iterative approaches, on animal-based 
screening or even on early proof of clinical 
efficacy in humans, and less on the predic-
tive power of high-affinity binding to the 
target of a molecule from a static library. 
Novartis is one company that is emphasizing 
proof-of-concept trials for drugs in rare  
diseases for which there is a high unmet 
need and a compelling match between the 
drug’s mode of action and the disease.  

Only if there is success here does the company 
invest in more expensive trials in more com-
mon diseases in which the mode of action 
may be more speculative, or in which the 
risk–benefit profile may be less clear. Third, 
in some therapeutic areas people could just 
stop believing in the current predictive ability  
of ‘basic research–brute force’ screening 
approaches, and resist the temptation to put 
molecules into clinical trials without having 
more compelling evidence of the validity of 
the underlying therapeutic hypothesis. 

There is, of course, no way of going 
back in time to see how well more recent 
R&D approaches would have worked in the 
1940s and 1950s. It is possible that research 
has become much better at delivering the 
right molecules into the clinic but that the 
improvements have been swamped by the 
‘better than the Beatles’ problem, the ‘low-
hanging fruit’ problem and the ‘cautious 
regulator’ problem.

Ironically however, if the industry really 
has been doing the right things, the ultimate 
prognosis may be bleaker. One can think of 
the opportunities for R&D in terms of a Venn 
diagram: as science and technology improve, 
some sets grow (for example, the set of drug-
gable targets, the set of drug-like molecules 
and the set of drugged targets), whereas other 
sets shrink (for example, the set of economi-
cally exploitable and still untreated diseases, 
or the set of acceptable off-target effects). 
It is obvious that R&D productivity could 
decline despite improvements in the inputs if 
the intersection that contained commercially 
attractive and approvable drug candidates 
shrunk. This idea is illustrated in FIG. 3, in 
which the notional set of validated targets 
grows between 1970 and 2010, but it does 
not grow fast enough to offset the growth in 
the set of targets that would either worry a 
cautious regulator or fail the ‘better than the 
Beatles’ test.

Finally, we note that it would be easier to 
improve the signal-to-noise ratio of drugs 
that enter clinical trials if: first, there was 
a detailed understanding of why drugs fail 
in the clinic; second, this led to the discov-
ery of a small number of common failure 
modes; and third, this knowledge could be 
used to change the early stages of the R&D 
process. If it is impractical to carry out 
retro spective analyses on the precise molec-
ular mechanisms of clinical trial failure, or if 
such retrospective analyses show that trials 
fail for many rare and idiosyncratic reasons, 
or if cycle times are so long that the lessons 
are obsolete by the time they are learned, 
then incremental improvement will be  
more difficult. Both the regulators23 and  

the industry18 are interested in the analysis 
of failure but it receives less scrutiny than 
one might expect given its dominant role in 
the costs of R&D.

Secondary symptoms
The four proposed primary causes of 
Eroom’s Law discussed above have given rise 
to several ‘symptoms’ that tend to further 
increase costs, particularly the costs of clini-
cal development. Some of these symptoms 
are highlighted below.

The narrow clinical search problem. The 
narrow clinical search problem is the shift 
from an approach that looked broadly for 
therapeutic potential in biologically active 
agents to one that seeks precise effects from 
molecules designed with a single drug 
target in mind. In the 1950s and 1960s, 
initial screening was typically performed in 
animals, not in vitro or in silico, and drug 
candidates were given in early stages of the 
development process to a range of physi-
cians. Discovery involved, to an extent, the 
ability of physicians to spot patterns through 
careful clinical observation, especially in 
therapeutic areas in which symptomatic 
improvements are readily observable, such 
as psychiatry36,49–51. This is sometimes dis-
missed as serendipity but the approach made 
it likely that new therapeutic effects would 
be detected. Even recently, it appears that 
many — perhaps most — new therapeutic 
uses of drugs have been discovered by moti-
vated and observant clinicians working with 
patients in the real world72. Some drug com-
panies, particularly smaller and mid-sized 
firms, recognize this opportunity and are 
active repositioners of existing drugs.

However, the ‘cautious regulator’ prob-
lem and the ‘basic research–brute force’ 
bias have pushed most of the drug industry 
towards a narrow clinical search strategy. 
If a drug has an effect but this is not the 
precise effect that the trial designers antici-
pated, then the trial fails. Opportunities 
for serendipity are actively engineered out 
of the system. Perhaps it is too risky to 
let bright doctors with large numbers of 
patients make broad clinical observations, 
or to let creative scientists rummage around 
in rich clinical data sets, in case they find 
something unexpected, which has to be 
explained to the cautious regulator who 
then kills the project. Modern multicentre 
trials tend to spread the patients so thinly 
that a doctor who did want to look for pat-
terns might miss them. In Phase II trials 
— perhaps the best opportunity to spot new 
things — the average number of patients 
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Targets that fail
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the Beatles’ test

per multicentre trial site is now very small: 
between five and ten patients in oncology, 
central nervous system and respiratory  
disease trials73.

The big clinical trial problem. The first 
randomized controlled trial, published in 
1948, recruited 109 patients and randomized 
107 of them74. Between 1987 and 2001, the 
number of patients per pivotal trial for anti-
hypertensive agents rose from around 200 to 
around 450 (REF. 75). Between 1993 and 2006, 
the average number of patients across the 
pivotal trials for a new oral antidiabetic drug 
rose from around 900 to over 4,000 (REF. 76). 
The first pivotal trial for Merck’s simvastatin 
(a cholesterol-lowering agent), published 
in 1994, recruited around 4,400 patients77. 
A pivotal trial for Merck’s anacetrapib, an 
investigational cholesterol-modulating agent 
intended to be used on top of drugs like 
simvastatin, is currently recruiting around 
30,000 patients.

This expansion is a consequence of sev-
eral factors. First, the ‘better than the Beatles’ 
problem increases trial size. Everything 
else being equal, clinical trial size should be 
inversely proportional to the square of the 
effect size. If the effect size halves, the trial 
has to recruit four times as many patients to 
have the same statistical power. The problem 
is that treatment effects on top of an already 
effective treatment are usually smaller 
than treatment effects versus placebo. 
Furthermore, Phase III trials have become a 
messy mixture of science, regulation, public 
relations and marketing. Trying to satisfy 
these multiple constraints tends to inflate 
their size and cost.

The best clinical trial to show efficacy 
would be something relatively small in a 
homogeneous patient sample recruited from 
as few centres as possible — the medical 
equivalent of a well-controlled experiment. 
But this tends to make the cautious regulator 
uneasy given variation in practice patterns 
and patients. What about rare side effects (the 
FDA has recently required post-marketing 
trials for long-acting bronchodilators in 
around 53,000 patients)? Small trials also 
make for bad marketing and, in the world 
of evidence-based medicine, poor market 
access. It is better to involve the senior  
doctors at the major centres. The number of 
principal investigators per drug in clinical  
trials has doubled over the past decade73.  
The consequence of this is multicentre  
trials that add noise and heterogeneity, and 
are therefore bigger and more expensive.

The multiple clinical trial problem. The 
‘better than the Beatles’ problem has 
increased the complexity of medical practice.  
In some areas, where once there were only 
one or two treatment options, there is now 
a rich back catalogue. For example, the 
treatment of patients with type 2 diabetes 
was once a choice of insulin or diet and 
exercise, but can now involve a combination 
of drugs from around ten different drug 
classes: biguanides, thiazolidinediones, sul-
fonylureas, meglitinides, alpha-glucosidase 
inhibitors, dipeptidyl peptidase 4 inhibitors, 
glucagon-like peptide 1 analogues, amylin 
analogues, long-acting and short-acting 
insulin analogues, as well as various human 
insulins and insulin mixes. Treatment for 
patients with colon cancer was once a choice 

between surgical resection or palliative 
care, but now the National Comprehensive 
Cancer Network’s colon cancer treatment 
guidelines contain up to 100 pages of 
detailed treatment algorithms.

The cautious regulator is less prepared to 
assume that the safety and efficacy of new 
drugs can be generalized across such hetero-
geneous and fragmented patient popula-
tions. Cost-sensitive health-care funders are 
also wary. This means narrower indications 
and more clinical trials per drug. The first 
long-acting insulin analogue, glargine, was 
approved by the FDA in 1999 following three 
pivotal Phase III trials. The newest long-
acting insulin analogue, degludec, was filed 
for regulatory approval in 2011 following 12 
pivotal trials (and, as mentioned above, an 
Empire State Building’s worth of documen-
tation). Some successful drugs in complex 
therapeutic areas appear to demand, over 
their life cycle, dozens of Phase III trials78.

The long cycle time problem. In the 1950s 
and 1960s, cycle times were remarkably 
short by modern standards. The regula-
tor was less cautious and there was less 
molecular reductionism before agents were 
screened for efficacy in animal models and 
in patients. This sped up innovation. The 
first antidepressant, imipramine, was synthe-
sized in around 1951. It was screened almost 
immediately in rats, and tested personally by 
a few scientists at the drug company Geigy51. 
It was then tested without much success in 
various patient groups in 1952, tested again 
in 1953, found to be problematic in patients 
with psychosis in 1954 and tried yet again 
in 1955 before it was identified as an anti-
depressant in 1956. It completed preclinical 
development and had not one but three clin-
ical cycles within 5 or 6 years. In 2005–2006, 
the typical period of time in clinical develop-
ment for a new drug was over 9 years21.  
The biggest increase in development times 
came between the 1960s and the 1980s21.

An idea: the CDDO
This article is intended to provoke further 
analysis of the forces that have counter-
vailed scientific, technical and managerial 
improvements over the past 60 years. We 
have avoided cures, partly because the ratio 
of published cures to diagnoses is already 
too high. We do, however, have one idea, 
which might also be viewed as a thought 
experiment.

We suggest that all large drug companies 
introduce a new board level role, which we 
call the Chief Dead Drug Officer (CDDO). 
This role would be focused on drug failure 

Figure 3 | Venn diagram illustrating hypothetical headwinds to R&D efficiency. Research and 
development (R&D) efficiency could decline if scientific, technical and managerial improvements 
are offset by other factors. For example, R&D efficiency could be limited by the supply of validated 
targets that could be drugged without failing the ‘cautious regulator’ test and/or the ‘better than 
the Beatles’ test. In this hypothetical illustration, the increase in the number of validated targets 
between 1970 and 2010 is outweighed by increasing regulatory caution and an improving catalogue 
of approved drugs.
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at all stages of R&D, and the CDDO 
would have a fixed time — for example, 18 
months — from appointment to compose 
a detailed report that aims to explain the 
causes of Eroom’s Law. This report would 
be submitted to the board of the company, 
included in the company’s annual report to 
shareholders, and would also be submitted 
for publication in a scientific journal and 
sent to organizations such as the FDA 
and the US National Institutes of Health. 
The remuneration for the role would be 
structured in such a way as to provide a 
strong incentive to provide an accurate 
forecast of the future R&D productivity 
of the company and the industry overall. 
For example, perhaps the salary could be 
relatively modest, but the CDDO could 
be eligible for an enormous bonus if their 
projections after a 10-year period are no 
more than 10% too optimistic or no more 
than 30% too pessimistic.

We like the idea for several reasons. 
First, the CDDO has no incentive to be 
irrationally optimistic. Second, R&D costs 
are dominated by the cost of failure73.  
Most molecules fail. Most research scientists 
spend most of their time on products that 
fail. It seems fitting that someone on the 
board should focus on the products that 
consume most of the R&D organization’s 
time, energy and money. Third, an expertise 
in drug failure should qualify the CDDO to 
produce a good explanation of Eroom’s Law.

The CDDO’s report should aim to explain 
the scale of the change in productivity.  
It should set out the major factors responsible 
for the progressive decline, and rank them 
in order of importance. It should consider 
how the relative importance of these factors 
has changed over time. Perhaps changes at 
the FDA dominated from 1960 to 1970, but 
something else dominates now? The analysis 
should compare different therapeutic areas. 
It should assess the extent to which the 
different factors are tractable. There should 
be some effort to quantify the ‘better than 
the Beatles’ problem and the ‘low-hanging 
fruit’ problem, as well as the potential value 
of underexploited drug targets. Attention 
should be given to the regulatory ratchet. 
Which requirements are most costly 
and least valuable? Which requirements 
might the regulator be persuaded to drop? 
What proportion of R&D cost is a direct 
consequence of the ‘throw money at it’ 
tendency? In which therapeutic areas are 
molecular reductionism and brute force 
screening methods a distraction, and in 
which are they genuinely helpful? What 
explains the difference between these 

therapeutic areas? Perhaps the CDDO 
could quantify their analysis with a series 
of Venn diagrams like those in FIG. 3, to 
identify which sets and intersections have 
grown, and by how much, and which sets 
and intersections have shrunk. There should 
also be an attempt to measure the veracity 
of previous diagnostic and forecasting 
exercises. What has been the accuracy of 
internal forecasts on drug approvability and 
commercial success? Has this changed over 
time? What have been the most common 
kinds of error?

If the CDDOs provide a good explanation 
that is consistent with the idea that the 
countervailing forces will abate, or will be 
overcome, then all is well and good. If the 
explanation is unconvincing, or identifies 
forces that appear to be intractable, then 
the problems are obvious. At least it would 
advance the debate on how to balance the 
property rights of shareholders and the 
financial responsibilities of company boards 
with the wider benefits of safe, effective and 
affordable new drugs.

The prognosis for Eroom’s Law
Just as we wanted to avoid proposing cures, 
we do not want to say too much about the 
prognosis for Eroom’s Law. However,  
it might appear strange if we said nothing.

Despite the durability of the trend in 
FIG. 1, we would be surprised if Eroom’s 
Law holds at an industry level over the next 
5–7 years. Our view follows from two some-
what mechanical factors, in addition to one 
more interesting reason.

Turning to the first of the mechanical  
factors, the amount spent on R&D is not 
going to increase. The ‘throw money at it’ 
tendency is being tackled by most compa-
nies, with varying degrees of intensity.  
The second mechanical factor is the cumber-
some biosimilar approval pathway that is 
emerging in the United States. Every aspect 
of the biosimilar production process can be 
scrutinized by the originator’s lawyers, and 
this raises the prospect of endless blocking  
litigation. Consequently, developers of  
biosimilar products anticipate to get at least 
some of these products approved via the 
standard new biologics approval pathway 
(the FDA’s biologics license application 
(BLA) process). These products will be 
approved as though they were novel agents, 
so they will inflate the number of novel 
approvals at very low R&D costs.

Turning to the interesting reason, we 
suspect that the signal-to-noise ratio may 
be improving among the compounds being 
developed for oncology indications. One or 

two other therapeutic areas may be similar 
in this respect. Perhaps there are hints of 
this in the FDA’s new drug approvals in 
2011. These totalled 30 overall, the most 
since 2004, although Munos24 has shown 
that the distribution of new drugs approved 
by the FDA per year resembles the output 
of a Poisson process, so we do not want to 
over-interpret one good year (if new drug 
approvals did follow a Poisson process with 
a mean number of 26 from 1980 to 2010, 
we would expect 30 drugs to be approved 
by chance alone around once every 5 years). 
Looking in more depth at the nature of 
the 30 new drugs, eight were anticancer 
agents (brentuximab vedotin, vandetanib, 
crizotinib, ipilimumab, asparaginase, vemu-
rafenib, ruxolitinib and abiraterone acetate). 
A focus on rare and poorly treated diseases 
is also visible in the 2011 total; 11 of the  
30 new drugs were orphan drugs, and  
the orphan drugs included seven of the 
eight new anticancer agents. Orphan drugs 
are less prone to many of the factors dis-
cussed above, including the ‘better than the 
Beatles’ problem, the ‘cautious regulator’ 
problem and the big clinical trial problem.

Flat to declining R&D costs, as well as a 
bolus of oncology drugs, more orphan drugs 
and ‘biosimilars as BLAs’, might put an end 
to Eroom’s Law at an industry level. Whether 
this improves things enough to provide 
decent financial returns on the industry’s 
R&D investment is a different question. 
Financial markets don’t think so. Industry 
executives do. It would be interesting to see 
what CDDOs think.

Jack W Scannell, Alex Blanckley and Helen Boldon  
are at Sanford C. Bernstein Limited, 50 Berkeley Street, 

Mayfair Place, London W1J 8SB, UK.

Brian Warrington is at Phoenix IP Ventures,  
45 The Drive, Hertford, Hertfordshire SG14 3DE, UK.

Correspondence to J.W.S.  
e-mail: Jack.Scannell@Bernstein.com

doi:10.1038/nrd3681

1. Hogan, J. C. Combinatorial chemistry in drug 
discovery. Nature Biotech. 15, 328–330 (1997).

2. Geysen, H. M., Schoenen, F., Wagner, D. & Wagner, R. 
Combinatorial compound libraries for drug discovery: 
an ongoing challenge. Nature Rev. Drug Discov. 2, 
222–230 (2003).

3. [No authors listed.] Combinatorial chemistry. Nature 
Biotech. 18, IT50–IT52 (2000).

4. Dolle, R. E. Historical overview of chemical library 
design. Methods Mol. Biol. 685, 3–25 (2011).

5. Sanger, F. Sequences, sequences, and sequences. 
Annu. Rev. Biochem. 57, 1–28 (1988).

6. Sanger, F. et al. Nucleotide sequence of bacteriophage 
phi X174 DNA. Nature 265, 687–695 (1977).

7. Meldrum, C., Doyle, M. A. & Tothill, R. W. 
Next-generation sequencing for cancer diagnostics: 
a practical perspective. Clin. Biochem. Rev. 32, 
177–195 (2011).

8. Joachimiak, A. High-throughput crystallography for 
structural genomics. Curr. Opin. Struct. Biol. 19, 
573–584 (2009).

9. Van Brunt, J. Protein architecture: designing from the 
ground up. Nature Biotech. 4, 277–283 (1986).

P E R S P E C T I V E S

NATURE REVIEWS | DRUG DISCOVERY  VOLUME 11 | MARCH 2012 | 199

© 2012 Macmillan Publishers Limited. All rights reserved



10. Mayr, L. M. & Fuerst, P. The future of high-throughput 
screening. J. Biomol. Screen. 13, 443–448 (2008).

11. Schnee, J. E. Development cost: determinants and 
overruns. J. Bus. 45, 347–374 (1972).

12. Baily, M. N. Research and development costs and 
returns: the U.S. pharmaceutical industry. J. Polit. 
Econ. 80, 70–85 (1972).

13. Comanor, W. Research and technical change in  
the pharmaceutical industry. Rev. Econ. Stat. 47, 
182–190 (1965).

14. Grabowski, H. G., Vernon, J. M. & Thomas, L. G. 
Estimating the effects of regulation on innovation:  
an international comparative analysis of the pharma-
ceutical industry. J. Law Econ. 21, 133–165 (1978).

15. Grabowski, H. & Vernon, J. A new look at the returns 
and risks to pharmaceutical R&D. Manage. Sci. 36, 
804–821 (1990).

16. Jensen, E. J. Research expenditures and the discovery 
of new drugs. J. Ind. Econ. 36, 83–95 (1987).

17. Joglekar, P. & Paterson, M. L. A closer look at the 
returns and risks of pharmaceutical R&D. J. Health 
Econ. 5, 153–177 (1986).

18. Elias, T., Gordian, M., Singh, N. & Zemmel, R. Why 
products fail in Phase III. In Vivo 24, 49–56 (2006).

19. Pammolli, F., Magazzini, L. & Riccaboni, M. The 
productivity crisis in pharmaceutical R&D. Nature Rev. 
Drug Discov. 10, 428–438 (2011).

20. Kola, I. & Landis, J. Can the pharmaceutical industry 
reduce attrition rates? Nature Rev. Drug Discov. 3, 
711–715 (2004).

21. DiMasi, J. A., Feldman, L., Seckler, A. & Wilson, A. 
Trends in risks associated with new drug  
development: success rates for investigational drugs. 
Clin. Pharmacol. Ther. 87, 272–277 (2010).

22. Paul, S. M. et al. How to improve R&D productivity: 
the pharmaceutical industry’s grand challenge.  
Nature Rev. Drug Discov. 9, 203–214 (2010).

23. US Food and Drug Administration. Innovation or 
Stagnation: Challenge and Opportunity on the Critical 
Path to New Medical Products. FDA website [online], 
http://www.fda.gov/ScienceResearch/SpecialTopics/
CriticalPathInitiative/CriticalPathOpportunitiesReports/ 
ucm077262.htm (2004).

24. Munos, B. Lessons from 60 years of pharmaceutical 
innovation. Nature Rev. Drug Discov. 8, 959–968 (2010).

25. Borhani, D. W. & Butts, J. A. Rethinking clinical trials: 
biology’s mysteries. Science 334, 1346–1347 (2011).

26. David, E., Tramontin, T. & Zemmel, R. Pharmaceutical 
R&D: the road to positive returns. Nature Rev.  
Drug Discov. 8, 609–610 (2009).

27. Garnier, J. P. Rebuilding the R&D engine in big 
pharma. Harv. Bus. Rev. 86, 68–79 (2008). 

28. Agarwal, S. et al. Unlocking the value in big pharma. 
McKinsey Quarterly 2, 65–73 (2001).

29. Ruffolo, R. R. Engineering success: Wyeth redefines its 
research & development organisation. Drug Discovery 
World website [online], http://www.ddw-online.com/s/
business/p148328/engineering-sucess:-wyeth-
redefines-its-research-&-development-organisation-
fall-05.html (2005).

30. Douglas, F. L., Narayanan, V. K., Mitchell, L. &  
Litan, R. E. The case for entrepreneurship in R&D in 
the pharmaceutical industry. Nature Rev. Drug Discov. 
9, 683–689 (2010).

31. Zhong, X. & Moseley, G. B. Mission possible: 
managing innovation in drug discovery. Nature 
Biotech. 25, 945–946 (2007).

32. Horrobin, D. Realism in drug discovery — could 
Cassandra be right? Nature Biotech. 19, 1099–1100 
(2001).

33. Horrobin, D. F. Innovation in the pharmaceutical 
industry. J. R. Soc. Med. 93, 341–345 (2000).

34. Horrobin, D. F. Modern biomedical research: an 
internally self-consistent universe with little contact 
with medical reality? Nature Rev. Drug Discov. 2, 
151–154 (2003).

35. Ruffolo, R. R. Why has R&D productivity declined in 
the pharmaceutical industry? Expert Opin. Drug 
Discov. 1 99–102 (2006).

36. Le Fanu, J. The Rise and Fall of Modern Medicine 
(Little Brown, London, 1999).

37. Pisano, G. Science Business: The Promise, the Reality, 
and the Future of Biotech. (Harvard Business School 
Press, Boston, 2006).

38. Young, M. P. Prediction v Attrition. Drug Discovery 
World website [online], http://www.ddw-online.com/s/
business/p92811/prediction-v-attrition-fall-08.html 
(2008).

39. Hopkins, A. L., Mason, J. S. & Overington, J. P.  
Can we rationally design promiscuous drugs?  
Curr. Opin. Struct. Biol. 16, 127–136 (2006).

40. Tollman, P., Morieux, Y., Murphy, J. K. & Schulze, U. 
Identifying R&D outliers. Nature Rev. Drug Discov.  
10, 653–654 (2011).

41. Ford, E. S. et al. Explaining the decrease in 
U.S. deaths from coronary disease, 1980–2000. 
N. Engl. J. Med. 356, 2388–2398 (2007).

42. Lichtenberg, F. The impact of drug launches on 
longevity: evidence from longitudinal disease-level 
data from 52 countries, 1982–2001. Int. J. Health 
Care Finance Econ. 5, 47–73 (2005).

43. Schnee, J. E. R&D strategy in the U.S. pharmaceutical 
industry. Res. Policy 8, 364–382 (1979).

44. Hopkins, A. L. & Groom, C. R. The druggable genome. 
Nature Rev. Drug Discov. 1, 727–730 (2002).

45. Russ, A. P. & Lampel, S. The druggable genome: an 
update. Drug Discov. Today 10, 1607–1610 (2005).

46. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L.  
How many drug targets are there? Nature Rev. Drug 
Discov. 5, 993–996 (2006).

47. Roth, B. L., Sheffer, D. L. & Kroeze, W. K. Magic 
shotguns versus magic bullets: selectively non-
selective drugs for mood disorders and schizophrenia. 
Nature Rev. Drug Discov. 3, 353–359 (2004).

48. Wurtman, R. J. & Bettiker, R. L. The slowing of 
treatment discovery, 1965–1995. Nature Med. 1, 
1122–1125 (1995).

49. Healy, D. The Psychopharmacologists: Volume 2 
93–118 (Hodder Arnold, London, 1999). 

50. Healy, D. The Psychopharmacologists: Volume 2 
259–264 (Hodder Arnold, London, 1999). 

51. Healy, D. The Antidepressant Era (Harvard University 
Press, Cambridge, Massachusetts, 1997).

52. Weatherall, M. An end to the search for new drugs? 
Nature 296, 387–390 (1982).

53. Richard, J. & Wurtman, M. D. What went right: why is 
HIV a treatable infection? Nature Med. 3, 714–717 
(1997).

54. [No authors listed.] A dearth of new drugs. Nature 
283, 609 (1980).

55. Persson, C. G., Erjefält, J. S., Uller, L., Andersson, M. 
& Greiff, L. Unbalanced research. Trends Pharmacol. 
Sci. 22, 538–541 (2001).

56. Ainsworth, C. Networking for new drugs. Nature Med. 
17, 1166–1168 (2011).

57. Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E. 
& Young, K. D. Escherichia coli mutants lacking all 
possible combinations of eight penicillin binding 
proteins: viability, characteristics, and implications  
for peptidoglycan synthesis. J. Bacteriol. 181,  
3981–3993 (1999).

58. Keith, C. T., Borisy, A. A. & Stockwell, B. R. 
Multicomponent therapeutics for networked systems. 
Nature Rev. Drug Discov. 4, 71–78 (2005).

59. Lombardino, J. G. & Lowe, J. A. The role of the 
medicinal chemist in drug discovery — then and now. 
Nature Rev. Drug Discov. 3, 853–862 (2004).

60. Swinney, D. C. & Anthony, J. How were new medicines 
discovered? Nature Rev. Drug Discov. 10, 507–519 
(2011).

61. Reichert, J. M. Probabilities of success for antibody 
therapeutics. mAbs 1, 387–389 (2009).

62. Steward, F. & Wibberly, G. Drug innovation — what’s 
slowing it down? Nature 284, 118–120 (1980).

63. Collins, F. S. Medical and societal consequences of the 
Human Genome Project. N. Engl. J. Med. 341, 28–37 
(1999).

64. Rees, J. Post-genome integrative biology: so that’s 
what they call clinical science. Clin. Med. 1, 393–400 
(2001).

65. Grove, A. Rethinking clinical trials. Science 333, 1679 
(2011).

66. O’Shaughnessy, J. et al. Iniparib plus chemotherapy  
in metastatic triple-negative breast cancer. N. Engl. 
J. Med. 364, 205–214 (2011).

67. O’Shaughnessy, J. et al. A randomized Phase III  
study of iniparib (BSI-201) in combination with 
gemcitabine/carboplatin (G/C) in metastatic  
triple-negative breast cancer (TNBC). J. Clin. Oncol. 
29, Abstr. 1007 (2011).

68. Guha, M. PARP inhibitors stumble in breast cancer. 
Nature Biotech. 29, 373–374 (2011).

69. Soda, M. et al. Identification of the transforming 
EML4–ALK fusion gene in non-small-cell lung cancer. 
Nature 448, 561–566 (2007).

70. Chapman, P. B. et al. Improved survival with 
vemurafenib in melanoma with BRAF V600E 
mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

71. [No authors listed.] Regulatory watch: leading 
hedgehog inhibitor submitted for approval as skin 
cancer drug. Nature Rev. Drug Discov. 10, 802–803 
(2011).

72. DeMonaco, H. J., Ali, A. & von Hippel, E. The major 
role of clinicians in the discovery of off-label drug 
therapies. Pharmacotherapy 26, 323–332 (2006).

73. Mathieu, M. P. (ed.) Parexel’s Bio/Pharmaceutical R&D 
Statistical Sourcebook 2010/2011 163–261 (Barnett 
International, Needham, Massachusetts, 2010).

74. Marshall, G. et al. Streptomycin treatment of 
pulmonary tuberculosis. BMJ 30, 769–782 (1948).

75. MacNeil, J. S. H. Changes in the characteristics of 
approved New Drug Applications for 
antihypertensives. Thesis, Massachusetts Institute of 
Technology (2007).

76. Lin, H. S. Changes in the characteristics of new drug 
applications for the treatment and prevention of 
diabetes mellitus. Thesis, Massachusetts Institute of 
Technology (2007).

77. Scandinavian Simvastatin Survival Study Group. 
Randomised trial of cholesterol lowering in 4444 
patients with coronary heart disease: the 
Scandinavian simvastatin survival study (4S). Lancet 
344, 1383–1389 (1994).

78. Munos, B. How to avert biopharma’s R&D crisis.  
In Vivo 29, 2011800050 (2011).

79. Macarron, R. et al. Impact of high-throughput 
screening in biomedical research. Nature Rev.  
Drug Discov. 10, 188–195 (2011).

80. Bohacek, R. S., McMartin, C. & Guida, W. C.  
The art and practice of structure-based drug design:  
a molecular modeling perspective. Med. Res. Rev.  
16, 3–50 (1996).

81. Brown, D. Future pathways for combinatorial 
chemistry. Mol. Divers. 2, 217–222 (1996).

82. Lipinski, C. A., Lombardo, F., Dominy, B. W. &  
Feeney, P. J. Experimental and computational 
approaches to estimate solubility and permeability in 
drug discovery and development settings. Adv. Drug 
Deliv. Rev. 46, 3–26 (2001).

83. Gleeson, M. P., Hersey, A., Montanari, D. & 
Overington, J. Probing the links between in vitro 
potency, ADMET and physicochemical parameters. 
Nature Rev. Drug Discov. 10, 197–208 (2011).

84. Kay, J. Obliquity: Why our goals are best achieved 
indirectly (Profile Books, London, 2010).

85. Watts, D. J. & Strogatz, S. H. Collective dynamics of 
‘small-world’ networks. Nature 393, 440–442 (1998).

86. Pharmaceutical Research and Manufacturers of 
America. Pharmaceutical Industry Profile 2011. 
PhRMA website [online], http://www.phrma.org/sites/
default/files/159/phrma_profile_2011_final.pdf 
(Washington DC, PhRMA, April 2011).

87. Congress of the United States: Congressional  
Budget Office. Research and Development in the 
Pharmaceutical Industry. Congressional Budget  
Office (CBO) website [online], http://www.cbo.gov/
ftpdocs/76xx/doc7615/10-02-DrugR-D.pdf (October 
2006).

Acknowledgements
W. Bains, T. Curtis, B. Charlton, M. Young, O. Imasogie,  
G. Porges, and B. Munos were generous with their time and 
ideas during various stages in the genesis of this article.

Disclaimer
The information provided herein was prepared by Sanford C. 
Bernstein & Co. LLC and Brian Warrington. It is not invest-
ment research, although it may refer to a Bernstein research 
report or the views of a Bernstein research analyst. This com-
munication does not constitute a complete fundamental 
analysis of any companies mentioned. Unless indicated, all 
views expressed herein are the views of the authors and may 
differ from or conflict with those of the Bernstein Research 
Department. This article does not constitute investment 
advice or recommendations and is not a solicitation or an 
offer to purchase or sell securities. The information contained 
herein is only good as of the date and time of the publication; 
we do not undertake to advise of any changes in the opinions 
or information contained herein.

Competing interests statement
The authors declare competing financial interests: see Web 
version for details. 

FURTHER INFORMATION
RCSB Protein Data Bank database:  
http://www.rcsb.org/pdb/statistics/holdings.do

SUPPLEMENTARY INFORMATION
See online article: S1 (table) | S2 (box)

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

P E R S P E C T I V E S

200 | MARCH 2012 | VOLUME 11  www.nature.com/reviews/drugdisc

© 2012 Macmillan Publishers Limited. All rights reserved



40 VOLUME 32   NUMBER 1   JANUARY 2014   NATURE BIOTECHNOLOGY

Trade Commission Bureau of Economics, 
Abrantes-Metz et al.9 covered a wide num-
ber of drugs over a 14 year period from 1989 
to 2002, but did not provide the number or 
type of companies investigated. Although the 
impact of company size and experience on 
R&D productivity has been studied exten-
sively10–13, success rates established by DiMasi 
et al.6, Kola et al.8 and Abrantes-Metz et al.9 
remain the primary benchmarks for the drug 
development industry.

We believe it is of great value to report 
updated success rates that capture the diver-
sity in drug development sponsor types as 
experience and technology vary widely out-
side of traditional, large pharmaceutical cor-
porations. Furthermore, the more recent time 
frame for this study provides insight into the 
latest industry productivity. A comparison of 
previously published reports with the current 
study is summarized in Table 3 and is dis-
cussed below.

One key distinction of the study pre-
sented here is our ability to evaluate all of 
a drug’s indications to determine success 
rates. Danzon et al.12 first considered suc-
cess rates at the indication level, recognizing 
that FDA requires clinical trial evidence to 
establish efficacy for each approved indi-
cation. Although these authors included 
data from 1988 to 2000, an observation 
period similar to Kola et al.8 and Abrantes-
Metz et al.9, their success rates were sig-
nificantly higher and lacked a characteristic  
decrease in phase 2 probability reported in 
previous studies as well as here. Danzon et 
al.12 concluded that higher clinical develop-
ment success rates resulted from the analysis 
of all indications. Even so, evidence presented 
here strongly suggests that evaluating all  
indications results in lower probabilities of 
success across all phases of drug development.

Since the human genome was sequenced 
ten years ago, the number of compounds 

in development has increased 62% and total 
R&D expenditures have doubled1–3. And yet, 
the average number of new drugs approved 
by the US Food and Drug Administration 
(FDA) per year has declined since the 1990s. 
In 2012, 39 novel drugs classified as new 
molecular entities (NMEs) and biologic 
license applications (BLAs) were approved 
by the FDA4. Although this represents the 
highest number of approvals since 1997 and 
is nearly 50% above the average of 26 approv-
als per year over the past decade, 25% fewer 
NME and BLA drugs were approved on aver-
age in the past 10 years compared with the 
1990s5. Several possible explanations for the 
divergence of R&D spending and new product 
approvals have been offered by professionals 
in the industry, such as unbalanced regulatory 
risk-benefit assessments, higher regulatory 
efficacy hurdles, commercial and financial 
decisions driving project termination, and 
the increased complexity and cost of clinical 
trials6,7.

This article aims to measure clinical devel-
opment success rates across the industry with 
a view to strengthening benchmarking met-
rics for drug development. The study is the 
largest and most recent of its kind, examining 
success rates of 835 drug developers, includ-
ing biotech companies as well as specialty and 

large pharmaceutical firms from 2003 to 2011. 
Success rates for over 7,300 independent drug 
development paths are analyzed by clinical 
phase, molecule type, disease area and lead 
versus nonlead indication status.

Our results pinpoint weaknesses along the 
capital-intensive pathway to drug approval. 
Our hope is that they will prove useful in 
informing policy makers where to focus 
changes in regulation and strengthen valua-
tion models used by industry and the invest-
ment community.

Analyzing success
To measure clinical development success rates 
for investigational drugs, we analyzed phase 
transitions from January 1, 2003 to December 
31, 2011, in the BioMedTracker database. The 
BioMedTracker data set contained 4,451 drugs 
with 7,372 independent clinical development 
paths from 835 companies and included 5,820 
phase transitions. The development paths 
comprised lead (primary) and nonlead (sec-
ondary) indications, with roughly 38% desig-
nated as nonlead. A more detailed description 
of the data collection, composition and analy-
sis methodology is described in Boxes 1–3 (see 
also Tables 1 and 2 ).

Unlike many previous studies that reported 
clinical development success rates for large 
pharmaceutical companies, this study pro-
vides a benchmark for the broader drug devel-
opment industry by including small public and 
private biotech companies and specialty phar-
maceutical firms. The aim is to incorporate 
data from a wider range of clinical develop-
ment organizations, as well as drug modalities 
and targets. Two landmark publications on the 
subject, DiMasi et al.6 and Kola et al.8 use 50 
and 10 pharmaceutical company pipelines, 
respectively, to arrive at their conclusions. An 
important study published by the US Federal 
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To illustrate the importance of using all 
indications to determine success rates, con-
sider this scenario. An antibody is developed 
in four cancer indications, and all four indi-
cations transition successfully from phase 1 
to phase 3, but three fail in phase 3 and only 
one succeeds in gaining FDA approval. Many 
prior studies reported this as 100% success, 
whereas our study differentiates the results as 
25% success for all indications, and 100% suc-
cess for the lead indication. Considering the 
cost and time spent on the three failed phase 3 
indications, we believe including all ‘develop-
ment paths’ more accurately reflects success 
and R&D productivity in drug development.

Examining individual drug indications 
allows us to answer the question: “what is the 
probability that a drug developed for a specific 
indication will reach approval?” Whereas, 
using only the lead or most advanced indi-
cation seeks to answer the question: “what is 
the probability that a drug will reach approval 
for any indication?” This study addresses both 
questions with emphasis on the findings of 
the former. In the following sections, we pres-
ent the results of our analysis as they relate 
to overall phase success and likelihood of 
approval (LOA; see Box 2 ), to the type of ther-
apeutic modality, to the disease being treated 
and to the type of drug application (whether 
orphan or Special Protocol Assessment (SPA) 
pathways).

Phase success and likelihood of approval
We found that approximately one in ten 
(10.4%, n = 5,820) of all indication develop-
ment paths in phase 1 were approved by FDA 
(Fig. 1 and Table 4 ). Examining the individual 
phase components of this compound prob-
ability, phase I success (the number of phase 1 
drugs that successfully transitioned to phase 2 
divided by the total transitions in phase 1) was 
64.5% (n = 1,918). Success in phase 2 (32.4%, 
n = 2,268) was substantially lower than in 
phase 1, but subsequently increased in phase 3  
(60.1%, n = 975). The probability of FDA 
approval after submitting a new drug appli-
cation (NDA) or biologic license application 
(BLA) was 83.2% (n = 659).

Success rates for lead indication develop-
ment paths were higher than for all indica-
tion development paths in every phase. Lead 
indications had a LOA from phase 1 of 15.3%  
(n = 3,688).

Success rates by drug classification
Drugs in the BioMedTracker data set were 
annotated by their FDA classification: new 
molecular entity (NME), non-NME, biologic 
and vaccine. However, owing to inconsistency 
in the FDA classifications, we also used our 

Box 1  Data collection and composition

BioMedTracker, a subscription-based product of Sagient Research Systems (San Diego) 
introduced in 2002, tracks the clinical development and regulatory history of novel 
investigational drugs in the United States. Analysts with advanced degrees in the life 
sciences and medicine maintain the database using information from company press 
releases, analyst conference calls, and presentations at investor and medical meetings. 
BioMedTracker also uses other sources, including regular communication with companies 
conducting clinical trials, to ensure the accuracy and timeliness of the data.

Data included in this study were selected using BioMedTracker’s Probability of Technical 
Success (PTS) calculator, which identified 5,820 phase transitions from January 1, 2003, 
to December 31, 2011. Transitions in all phases of development were recorded in the early 
years of observation and resulted from clinical studies initiated before 2003. The data set 
contained 4,451 drugs from 835 companies and 7,372 independent clinical development 
paths in 417 unique indications.

The composition of these novel drug development sponsors included a wide range of 
company sizes and types (Table 1). Emerging biotech represented 85% (712) of the 
companies, whereas a small number (33) of large firms (4% of total) were responsible for 
48% (3,573) of indications and 47% (2,075) of drugs in development. Similarly, private 
firms represented 49% (412) of the companies and fewer than 20% of indications and 
drugs included in the study.

These ownership classifications were recorded at the end of the analysis time period 
and underestimate the number of drugs and indications developed by biotech companies 
due to licensing and acquisitions during the study time frame. In addition, ownership was 
assigned to the licensee controlling and funding the majority of development. In cases 
where development and economics were shared equally, ownership was generally assigned 
to the larger organization, further contributing to the conservative estimate of drugs 
developed by small and private biotech companies. Although generic products were not 
included, generic manufacturers developing novel investigational drugs were represented.

The study also likely tracked a larger percentage of late-stage studies as these programs 
are more often in the public domain. Even so, small biotech companies often disclose 
ongoing phase 1 studies and we would expect their substantial representation in this 
study to partially offset the under-representation of early-stage discontinuation rates.
Only company sponsored development paths designed for FDA approval were considered; 
investigator sponsored studies and combinations with other investigational drugs were 
excluded in this analysis.

In addition, this study analyzed development paths organized by disease area, 
biochemical composition, molecular size, FDA classification and regulatory status (SPA and 
orphan drug status). Given the increasing complexity of ownership and diversity of invention 
in the drug development industry, the study did not further classify the database on the 
discovery origin or licensing status of the drug.

Table 1  Analysis of company size and type
Companies Indications Drugs

Number Percentage Number Percentage Number Percentage

Company size

Large pharma/biotech 
(>$5 billion sales)

33 4% 3,573 48% 2,075 47%

Small to mid-sized 
pharma/biotech  
($0.1 billion– 
$5 billion sales)

90 11% 1,099 15% 724 16%

Emerging biotech 
(<$0.1 billion sales)

712 85% 2,700 37% 1,652 37%

Total 835 – 7,372 – 4,451 –

Company type

Private 412 49% 1,269 17% 841 19%

Public 423 51% 6,103 83% 3,601 81%

Total 835 – 7,372 – 4,451 –
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data to annotate drugs by their biochemi-
cal composition (e.g., peptide, nucleic acid, 
monoclonal antibody (mAb)) and molecu-
lar size (i.e., large and small molecules). 
For example, FDA often designates large- 
molecule biologics, such as proteins and pep-
tides, as NMEs. Indeed, large molecules, as 
defined by the BioMedTracker biochemical 
categories, comprise 13% of the NME data set, 
making direct FDA NME to biologic classifica-
tion comparisons somewhat imprecise. FDA’s 
biologic classification comprises a wider group 
that includes the Center for Drug Evaluation 
and Research (CDER) regulated products, 
such as antibodies, cytokines, growth fac-
tors and enzymes, as well as the Center for 

Biologics Evaluation and Research (CBER) 
regulated products including blood isolates, 
gene therapies and cell therapy.

FDA’s non-NME classification often 
includes drugs with the same molecular 
properties as NMEs, but which are frequently 
reformulations or combinations of approved 
products. The majority of non-NMEs also use 
the 505(b)(2) pathway to gain FDA approval. 
Vaccines were also treated as a separate class 
in this analysis, and generic and over-the-
counter drugs were not included. A com-
parative analysis of FDA classifications and 
BioMedTracker categories can be found in 
Supplementary Table 1. The metrics for the 
different therapeutic modality types is pro-

vided in Table 4 .
NMEs were found 

to have the low-
est success rates in 
every phase of devel-
opment; biologics 
had nearly twice the 
LOA from phase 1 
(14.6%, n = 1,173) 
as NMEs (7.5%, n = 
3,496) for all indi-
cations (Table  4 ).  
Similar results are 
seen when the data 
are reclassified into 
l a r g e - m o l e c u l e 
(excluding low 
molecular weight 
chemicals and ste-
roids) and small-
molecule NMEs: 
13.2% (n = 1,834) and 

7.6% (n = 3,029), respectively. In addition, the 
LOA from phase 1 for mAbs (14.1%, n = 639), 
a good proxy for CDER-regulated biologics, 
was also consistent with these broader defini-
tions of biologics.

Non-NMEs had the highest LOA from 
phase 1 of 20.0% (n = 855), with success rates 
well above those of the NME and biologic 
classifications in every phase. However, many 
non-NMEs begin development in phase 2 or 
phase 3, so the actual approval rate is likely 
higher (assuming that successful phase 1 out-
comes would contribute positively to the LOA 
from phase 1).

When analyzing lead indications only (i.e., 
on a per drug basis), we find similar rankings 
for NME, biologic and non-NME, but at much 
higher success rates. The LOA from phase 1 
for biologics and non-NMEs are near one in 
four and NMEs approach one in eight (12.0%, 
n = 2,124), almost twice what was found when 
all indications were considered.

Success rates by disease
We found substantial variation in success rates 
among disease, as listed in Table 5  from high-
est to lowest LOA from phase 1. Oncology 
drugs had the lowest LOA from phase 1 at 
6.7% (n = 1,803). Drugs for the ‘other’ disease 
group, which combined allergy, gastroenterol-
ogy, ophthalmology, dermatology, obstetrics-
gynecology and urology indications due to 
small sample size, had the highest LOA from 
phase 1, at 18.2% (n = 720). Drugs for infec-
tious disease and autoimmune-immunol-
ogy groups had the next two highest LOAs 
from phase 1, at 16.7% (n = 537) and 12.7%  
(n = 549), respectively.

On a lead indication basis, also in Table 5 , 
we found that cardiovascular drugs had the 
lowest LOA from phase 1 at 8.7% (n = 318) 
and the ‘other’ disease category again had 
the highest success rate at 24.5% (n = 499). 
The largest difference between lead and all- 
indication for LOA from phase 1 was observed 
in oncology: 6.7% (n = 1,803) for lead indica-
tion and 13.2% (n = 796) for all indications. 
Oncology drugs also had the most nonlead 
indications (56% of all development paths 
compared with 28% of non-oncology indi-
cations) as a result of the large number of 
cancers investigated using the same drug. 
Unfortunately, in oncology, when all indi-
cations are considered, only around 1 in  
15 drugs entering clinical development in 
phase 1 achieves FDA approval compared 
with close to 1 in 8 using the lead indication 
methodology. As noted above, the result for 
lead indications represents the most success-
ful development path for a particular com-
pound, thereby addressing LOA on a per drug 

Lead indications

67% 64%

39%

32%

68%

60%

86%
83%

15.3%
10.4%

All indications

Phase 1 to
phase 2

Phase 2 to 
phase 3

Phase 3 to 
NDA/BLA

NDA/BLA to 
approval

LOA from
phase 1

ba

Phase success

Figure 1  Phase success and LOA rates. (a) Phase success rates for lead 
and all indications. The rates represent the probability that a drug will 
successfully advance to the next phase. (b) LOA from phase 1 for lead and 
all indications. Rates denote the probability of FDA approval for drugs in 
phase 1 development.

 Box 2  Metrics of success: ‘Phase Success’ and ‘Likelihood of 
Approval’

There are two different types of success rates reported in this study: ‘Phase Success’ and 
‘Likelihood of Approval’ (LOA). ‘Phase Success’ is calculated as the number of drugs that 
moved from one phase to the next phase divided by the sum of the number of drugs that 
progressed to the next phase and the number of drugs that were suspended. The n value 
associated with the Phase Success represents the number of drugs that have advanced 
plus the number of drugs that have been suspended, which we label as phase transitions. 
For example, if there were 100 drugs in phase 2 development and 50 transitioned to 
phase 3, 20 were suspended and 30 remained in phase 2 development, the phase 2 
Phase Success would be 71.4% (50/70; n = 70).

Our second metric, LOA, denotes the probability of reaching FDA approval from the 
current phase, and is also expressed as a percentage. LOA is calculated as the product 
of each Phase Success probability leading to FDA approval. The n value associated with 
LOA is the sum of the n values for each Phase Success included in the LOA calculation. 
For example, if a drug is currently in phase 2, and the Phase Success for phase 2 is 30% 
(n = 20), phase 3 is 50% (n = 10), and FDA approval is 80% (n = 5), then the LOA for 
the phase 2 drug would be 12% (30% × 50% × 80% = 12%, n = 35). This calculation is 
illustrated in Supplementary Figure 2.
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Data used for this study were extracted 
from BioMedTracker using a probability 
of technical success (PTS) tool, which 
identified all ‘Advanced’ and ‘Suspended’ 
drugs by development phase from 
January 1, 2003, to December 31, 
2011. BioMedTracker tracks the clinical 
development and regulatory history 
of investigational drugs to assess its 
Likelihood of Approval (LOA) from phase 
1 by the FDA. The database is populated 
in near real-time with updated information 
from press releases, corporate earnings 
calls, investor and medical meetings, and 
numerous other sources. These data are 
recorded in BioMedTracker and tagged with a date.

Phase is defined as the stage of clinical development in the 
United States (Table 2). Although it is rare, drugs that were 
removed from development in the United States, but approved 
in Europe (e.g., vildagliptin for type II diabetes) were considered 
‘suspended’ for the sake of our analysis. In this time period, 
7,372 development paths were analyzed, encompassing 4,451 
unique compounds. 5,820 unique phase transitions were used 
to determine the reported success rates. Table 4 includes the 
number of observed transitions by phase (a description of the 
success rate analysis is described). Phase 2 transitions accounted 
for the highest percentage of the data set with 39% (n = 2,268), 
compared with 33% in phase 1 (n = 1,918), 17% in phase 3 (n = 
975) and 11% in NDA/BLA  
(n = 659). Nonlead indications comprise 38% (n = 2,132) of the 
5,820 total transitions and success rates by phase can be found in 
Supplementary Table 2.

Development paths track a specific indication for each drug. For 
example, Rituxan (rituximab) in non-Hodgkin’s lymphoma qualifies 
as a development path different from Rituxan in multiple sclerosis 
(MS). BioMedTracker assigns a unique internal identifier that can 
be used to isolate all development paths. In addition to tracking 
the phase of development, BioMedTracker assigns ‘lead’ status 
to certain development paths. This is used to denote the most 
advanced indication in clinical development for a specific drug. 
Drugs can only have one lead development path, except in specific 
circumstances where two development paths are being developed 
simultaneously (e.g., type I and type II diabetes). For example, 
the Avastin (bevacizumab) colorectal cancer development path 
was marked as a ‘lead’ indication, and other Avastin development 
paths were labeled ‘nonlead’. Using this metric, Avastin clinical 
development can more accurately be viewed as a series of 
successes and failures, as opposed to simply one success and no 
failures. However, a drug’s lead indication may also change if it 
fails in development in the lead indication. The lead indication 
success rate will therefore be higher due to selection bias than the 
nonlead success rate. This bias does not affect the LOA from  
phase 1 rate for all indication development paths.

BioMedTracker also records a number of other variables including 
the following:

t�'%"�DMBTTJGJDBUJPO�	F�H�
�/.&
�OPO�/.&
�CJPMPHJD�PS�WBDDJOF

t�#JPDIFNJDBM�QSPGJMF�	F�H�
�TNBMM�NPMFDVMF
�NPOPDMPOBM�

antibody, antisense)

t�%JTFBTF�BSFB�	F�H�
�BVUPJNNVOF
�DBSEJPWBTDVMBS
�PODPMPHZ

t�*OEJDBUJPO�	F�H�
�EJBCFUFT
�BDVUF�DPSPOBSZ�TZOESPNF

In contrast with many earlier studies, which included only a 

limited sample of drugs from large companies, the current study 
included BioMedTracker data from small biotech companies as 
well as specialty and large pharmaceutical firms.

Phase success and LOA rates calculation. A common method of 
determining drug development success rates detailed in DiMasi 
et al.6 and Abrantes-Metz et al.9 was used in this study. Phase 
Success, defined as the probability of a drug moving from phase 
X to phase X + 1, was used as the basis for all analyses. To arrive 
at this value, the following questions are used to categorize each 
drug development path: first, was the drug development path 
ever in phase X? Second, if so, did it advance to phase X + 1?  
And third, was it ‘Suspended’? After categorizing all drug 
development paths, Phase Success is calculated by dividing 
the number of development paths that advanced from phase X 
to phase X + 1 by the sum of the number of development paths 
that advanced from phase X to phase X + 1 and the number 
of development paths that were suspended from phase X – 
Advanced/(Advanced + Suspended) = Phase Success.

Using this method, we arrived at the probabilities of an 
‘average’ drug advancing from phase 1 to phase 2, from phase 2 
to phase 3, from phase 3 to filing the NDA/BLA and from filing 
the NDA/BLA to FDA approval. We then compounded these 
probabilities to determine the probability (LOA) that a drug in 
phase X is approved. For example, the LOA for a drug which 
has entered phase 2 is the product of the phase success rates 
from phase 2, phase 3 and NDA/BLA. An example calculation is 
illustrated in Supplementary Figure 2.

For purposes of this analysis, all indications that were 
advanced or suspended in any phase during our collection 
time frame were included. In practice, this means a drug that 
‘entered’ the analysis in 2003 in phase 2, and later advanced to 
phase 3, was included in the study. This method was selected 
because there are relatively few drugs that entered development 
in phase 1 in the range of years analyzed and have subsequently 
progressed through final FDA review, and there is less disclosure 
of drugs in phase 1 development. Abrantes-Metz et al.9 also 
used a similar method and stated, “We did it this way because 
the data set has very few drugs with complete information for 
all… phases.” Drugs that remained in the same phase were 
censored, as were those that moved back a phase but were not 
suspended9.

Box 3  Methods used in this study

Table 2  Definitions of terms used in this study
BioMedTracker term Description for purposes of this study

I Drug is currently in phase 1

I/II, II, IIb Drug is currently in phase 2

II/III, III Drug is currently in phase 3

NDA/BLA Application for approval has been submitted to the FDA and is  
currently under review

Approved, withdrawn from market, 
approved (Generic competition)

Drug has been approved for marketing in the United States

Suspended Drug is no longer in development

Approved in Europe, Approved in 
other than US/EU, Development, 
Development outside US

The company developing this drug does not plan to market it in the 
United States
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basis. Using the lead indication methodology 
to determine success rates, the scope of the 
challenge in oncology drug development 
would be dramatically underestimated.

The largest variation in success rates across dis-
ease groups was observed in phase 2. In Table 5   
all-indication phase 2 success rates ranged 
from 26.3% (for cardiovascular) to 45.9% (for 
infectious disease). In phase 3, all indication 
success rates ranged from 45.2% (for oncol-
ogy) to 71.1% (for other). In contrast, phase 1 
and NDA/BLA (As only one application, NDA 
or BLA, will be filed for any single indication, 
rates are given below for NDA/BLA.) filing 
success rates were more consistent across dis-
ease groups. All indication data from Table 5   
are charted in Figure 2  to illustrate the large 
differences in phases 2 and 3 and LOA from 
phase 1 success rates across disease areas. 

The development paths with the two low-
est rates of phase 3 success were oncol-
ogy and cardiovascular disease, with 45.2%  
(n = 221) and 52.8% (n = 89), respectively. 
Figure 2  also highlights the large step-up in 
success rates from phase 2 to phase 3 for auto-
immune, endocrine and respiratory diseases, 
increasing from 34% to 68%, 34% to 67%, and 
28% to 63%, respectively. The low LOA from 
phase 1 in oncology rate results primarily from 
the lack of such a step-up, with a low phase 2 
rate of 28.3% (n = 827), followed by a phase 3 
success rate of only 45.2% (n = 221).

Success rates for oncology and non-oncology 
drugs. As oncology drugs made up the larg-
est portion of the total data set (31.0% of all 
transitions) and had the lowest LOA from 
phase 1 (6.7%, n = 1,803), we investigated 

their contribution to 
success rates for the 
entire data set. To 
accomplish this, we 
removed all oncology 
drug development 
paths and compared 
these results to the 
full data set and 
oncology develop-
ment paths alone. 
Table 6  shows phase 
success and LOA 
rates for drugs for all 
disease groups, oncol-
ogy and non-oncol-
ogy development 
paths. The LOA from  
phase 1 across non-
oncology indications 
is nearly twice that 
for oncology alone, 
12.1% (n = 4,017) 

versus 6.7% (n = 1,803), respectively, reducing 
the probability of FDA approval in the full data 
set from nearly one in eight to over one in ten. 
Interestingly, the LOA from phase 1 for small-
molecule NMEs was similar for oncology (6.6%,  
n = 1,163) and non-oncology (7.9% n = 2,333)  
indications, and biologics and non-NMEs 
accounted for much of the difference. For 
example, oncology biologics had a 7.3%  
(n = 429) LOA from phase 1 compared 
with 19.4% (n = 744) for non-oncology  
biologics.

Table 7  shows phase success and LOA rates 
in subcategories of cancer type for oncology 
drugs. Although a high number of transitions 
in all phases were seen for the solid tumor  
(n = 1,358) and hematological (n = 409) sub-
groups, further classification of oncology indica-
tions results in low numbers of transition from 
phase 3 to NDA/BLA. As is true of the full data 
set, drugs in phase 2 for oncology subgroups 
display more transitions and represent the 
strongest data for specific-indication success 
rate analysis. Oncology phase 2 success rates 
ranged from 50.0% (n = 12) in head and neck 
cancer to 20.9% (n = 24) in prostate cancer; 
however, the phase 2 rank order by tumor type 
was uncorrelated with LOA from phase 1 (linear 
regression, R2 = 0.26). On average, phase 2 suc-
cess rates were higher in hematological tumors 
(34.6%, n = 179) than in solid tumors (26.3%,  
n = 636). Only two phase 3 oncology indica-
tions had more than 20 transitions: breast cancer  
(n = 25) and non–small cell lung cancer (n = 23), 
which together accounted for ~28% of the solid 
tumor phase 3 transitions (n = 172). Because of 
even smaller sample sizes, cancer type success 
rates were not analyzed by lead indication.

Success rates for neurology, autoimmune 
and endocrine disease drugs. Neurology and 
autoimmune/immunology disease groups are 

Figure 2  Phase success and LOA from phase 1 by disease for all indications. 
The bars represent phase 2 and phase 3 success rates and the line 
represents LOA from phase 1.
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Table 3  Comparison of our study with previous drug development success rate studies
This study (2013) all

indications
This study (2013)
lead indications

DiMasi et al.6 lead
indications

Kola et al.8 lead
indications

Abrantes-Metz et al.9 
lead indications

Phase  
success Phase LOA

Phase  
success Phase LOA

Phase  
success Phase LOA

Phase  
success Phase LOA

Phase  
success Phase LOA

Phase 1 to phase 2 64.5% 10.4% 66.5% 15.3% 71% 19% 68% 11% 80.7% NA

Phase 2 to phase 3 32.4% 16.2% 39.5% 23.1% 45% 27% 38% 16% 57.7% NA

Phase 3 to NDA/BLA 60.1% 50.0% 67.6% 58.4% 64% 60% 55% 42% 56.7% NA

NDA/BLA to approval 83.2% 83.2% 86.4% 86.4% 93% 93% 77% 77% NA NA

LOA from phase 1a 10.4% 15.3% 19% 11% 26.4%c NA

Number of drugs in 
sample advanced or  
suspendedb

5,820 4,736 1,316 NA 2,328

Dates of source data 
(duration) 2003–2011 (9 years) 1993–2009  

(17 years)
1991–2000  
(10 years)

1989–2002  
(14 years)

Number of companies 835 50 10 NA
aProbability of FDA approval for drugs in phase 1 development. bTotal number of transitions used to calculate the success rate (the n value noted in the text). cAbrantes-Metz, et al.9 reported 26.4% from phase 1 to phase 3. 
If we were to conservatively apply the 83.2% NDA/BLA success rate found in this study, Abrantes-Metz would yield the highest LOA from phase 1 (21%). NA, data not available.
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success rates in all phases, except for NDA/
BLA submissions, at 86.4% (n = 22).

Regulatory pathway success rates
To investigate the influence of regulation on 
clinical success we looked at two important 
pathways for drug oversight: the SPA and 
orphan drug designation.

SPA success rates. Similar to other analy-
ses, we looked at phase success and LOA 
rates for drugs with an SPA (Table 9 ). Before  

An autoimmune subset analysis reveals 
that biologics had more than five times the 
LOA from phase 1 (22.5%, n = 288) than 
NMEs (5.2%, n = 202). Table 8 also includes 
success rates for the type II diabetes and 
rheumatoid arthritis indication subcatego-
ries. Although rheumatoid arthritis had a 
100% (n = 5) NDA/BLA submission suc-
cess, the LOA from phase 1 was only 10.3%  
(n = 130) due to one of the lowest phase 2 
success rates in this study (15.9%, n = 63). 
Diabetes also displayed lower-than-average 

well represented, comprising 17% and 9% of 
the data set, respectively. We subcategorized 
neurology into pain and psychiatric disor-
ders, the two main therapeutic areas rep-
resenting 51% of all neurology indications 
(Table 8). Analyzing all development paths, 
pain indications had a 10.7% (n = 231) LOA 
from phase 1 compared with 7.2% (n = 294) 
for psychiatric disorders. Other neurology 
indications, mainly representing neurode-
generative diseases, had a 9.8% (n = 452) LOA 
from phase 1.
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Figure 3  NDA/BLA success rates. (a) Cumulative approval rates by FDA review from 2005 to 2011 (914 reviews). (b) Cumulative and first FDA approval 
rates by disease.

Table 4  Phase success and LOA by drug class
Phase 1 to phase 2 Phase 2 to phase 3 Phase 3 to NDA/BLA NDA/BLA to approval

Total in 
phasea

Advanced or  
suspendedb

Phase  
successc

Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase  

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase  

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase  

successc
Phase 
LOAd

FDA classificatione

All indications 2,541 1,918 64.5% 10.4% 3,743 2,268 32.4% 16.2% 1,554 975 60.1% 50.0% 908 659 83.2% 83.2%

NMEs 1,585 1,218 64.2% 7.5% 2,375 1,470 28.6% 11.6% 831 515 53.2% 40.7% 425 293 76.5% 76.5%

Biologics 572 411 68.4% 14.6% 819 464 37.9% 21.3% 320 182 63.2% 56.1% 159 116 88.8% 88.8%

Non-NMEs 218 168 66.7% 20.0% 355 226 45.1% 29.9% 321 234 75.6% 66.3% 293 227 87.7% 87.7%

Lead indications 1,770 1,336 66.5% 15.3% 2,070 1,247 39.5% 23.1% 1,009 633 67.6% 58.4% 664 472 86.4% 86.4%

NMEs 1094 848 65.2% 12.0% 1,275 791 36.4% 18.3% 497 300 61.7% 50.3% 283 185 81.6% 81.6%

Biologics 362 257 75.1% 20.8% 403 216 44.0% 27.7% 182 106 71.7% 63.1% 106 75 88.0% 88.0%

Non-NMEs 167 124 66.9% 23.2% 232 153 49.0% 34.6% 254 186 79.0% 70.7% 246 189 89.4% 89.4%

Biomedtracker product categoryf

Small molecule
NMEs 1,335 1,033 65.4% 7.6% 2,053 1,283 29.0% 11.6% 725 449 52.3% 39.8% 369 264 76.1% 76.1%

Large molecules 912 658 65.8% 13.2% 1,279 714 37.7% 20.1% 511 296 60.1% 53.3% 244 166 88.6% 88.6%

mAbs 329 234 70.1% 14.1% 458 268 38.1% 20.1% 147 84 60.7% 52.7% 65 53 86.8% 86.8%

non-mAb  
proteins 192 151 58.9% 13.1% 280 170 35.3% 22.3% 150 87 69.0% 63.1% 93 59 91.5% 91.5%

Vaccines 121 57 67.1% 14.9% 160 79 44.3% 22.2% 67 34 50.0% 50.0% 23 20 100.0% 100.0%
aNumber of indications identified. bTotal number of transitions used to calculate the success rate, the n value noted in the text. The difference between ‘Total in phase’ and ‘Advanced or suspended’ is the number of indica-
tions that remain in development. cProbability of successfully advancing to the next phase. dProbability of FDA approval for drugs in this phase of development. eFDA NME, biologic and non-NME classifications as defined in 
the results section. Data are presented for all and lead indication development paths. fBioMedTracker classification of small-molecule NMEs and large-molecule drugs. Large molecules are further stratified by biochemical profile.
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third, fourth or fifth time the agency reviewed 
the specific application). Figure 3a shows the 
cumulative success rates for NDA/BLA filings 
in the all, lead and NME drug classifications. 
Only 56.9% of all applications were approved 
on the first NDA/BLA submission, whereas 
86.2% were approved by the third submission. 
After the third submission, there was only a 
marginal increase in the cumulative approval 
percentage, as there were few drugs with more 
than three regulatory reviews. For all NMEs, 
we found similar first submission success 
rates, yet fewer than 80% of these drugs were 
approved by FDA in subsequent submissions.

Analysis of first review approval success 
rates by disease reveals a variation incon-
sistent with cumulative approval rates. For 
example, Figure 3b shows that although 
oncology drugs had a median NDA/BLA suc-
cess rate (81%), the chances of a first review 
approval were the highest, at 71%. Neurology 
drugs, on the other hand, had the lowest first 
review approval rate at 36%, but the cumula-
tive approval rate reached 78%.

We also examined 304 first review FDA 
complete response letters and approvable 
letters issued for approved and suspended 
drugs. For approved drugs, 46% of the letters 
to the sponsor cited manufacturing or label-
ing issues and 47% cited efficacy or safety. 
In contrast, for suspended drugs, only 2% 
cited manufacturing or labeling issues and  

initiating a pivotal phase 3 program, compa-
nies can submit the protocol to the FDA to 
obtain the agency’s agreement that the trial(s) 
are adequate to meet its scientific and regu-
latory requirements. At the same time, these 
trials are often more complex and investigate 
treatments for less well understood diseases. 
This latter point is evident from our analysis: 
NDA/BLA success rates for SPA-designated 
drugs are slightly below average at 80.0%  
(n = 45) compared with 83.2% (n = 659) for 
all drugs. On the other hand, phase 3 success 
rates are nearly identical at 60.0% (n = 110) for 
SPA-designated drug indications compared 
with 60.1% (n = 975) for all drugs.

Orphan drug pathway success rates. A com-
pany may request that FDA grant the orphan 
designation for a drug being studied in a rare 
disease or condition. This is intended for indi-
cations affecting fewer than 200,000 people in 
the United States. Orphan drug designation 
was designed to reduce development costs and 
provide financial incentives (e.g., an extended 
exclusivity period) to encourage develop-
ment in these indications. Table 9  shows that 
although drugs for orphan indications have 
high rates of phase 1 and 2 success, phase 3 
and NDA/BLA success rates are similar to all 
indications. Even so, it is important to note 
that orphan designations can be granted 
at any point in the clinical development  

process and are most often received when a 
drug is in phase 2. Orphan drugs in our data 
set received orphan status at all stages of 
development: preclinical (9%), phase 1 (22%),  
phase 2 (45%), phase 3 (16%) and NDA/BLA 
(2%). This distribution introduces a positive 
bias in early development success rates as 
some trials are not annotated as orphan until 
later phases. In contrast, by phase 3, 82% of 
indications that end up with the orphan des-
ignation have been annotated. Indeed, orphan 
indication phase 1 and 2 success rates were 
well above average at 86.8% (n = 136) and 
70.0% (n = 190), respectively. Orphan phase 3  
success rates (66.9%, n = 148) also com-
pared favorably with all indications (60.1%,  
n = 975) and orphan NDA/BLA approvals 
were lower, 81.0% (n = 84) compared with 
83.2% (n = 659), respectively. A subgroup 
analysis of phase 3 and NDA/BLA stage 
orphan drugs by indication reveals that 
oncology success rates were lower than non-
oncology drugs, a result that is consistent with 
these categories in the full data set.

NDA/BLA success rates
To complement the NDA/BLA phase suc-
cess rates gathered above, we examined 910 
FDA decisions from 2005 to 2011 and classi-
fied each as ‘Approved’ or ‘Not Approved.’ In 
addition, we determined at which FDA review 
each decision occurred (i.e., the first, second, 

Table 5  Phase success and LOA by diseasea

Phase 1 to phase 2 Phase 2 to phase 3 Phase 3 to NDA/BLA NDA/BLA to approval

Total in 
phaseb

Advanced 
or sus-

pendedc
Phase 

successd
Phase 
LOAe

Total in 
phaseb

Advanced 
or sus-

pendedc
Phase 

successd
Phase 
LOAe

Total in 
phaseb

Advanced 
or sus-

pendedc
Phase 

successc
Phase 
LOAe

Total in 
phaseb

Advanced 
or sus-

pendedc
Phase 

successd
Phase 
LOAe

All indications

Otherf 254 198 72.2% 18.2% 419 251 44.2% 25.3% 252 159 71.1% 57.1% 169 112 80.4% 80.4%

Infectious disease 247 196 65.8% 16.7% 288 157 45.9% 25.4% 159 98 65.3% 55.4% 115 86 84.9% 84.9%

Autoimmune 241 178 68.0% 12.7% 350 215 34.0% 18.7% 149 95 68.4% 55.0% 88 61 80.3% 80.3%

Endocrine 223 180 58.3% 11.6% 293 198 33.8% 19.8% 147 95 67.4% 58.5% 91 61 86.9% 86.9%

Respiratory 110 90 66.7% 11.1% 193 120 27.5% 16.7% 58 30 63.3% 60.8% 33 25 96.0% 96.0%

Neurology 389 298 62.4% 9.4% 520 348 30.2% 15.0% 285 188 60.6% 49.9% 192 152 82.2% 82.2%

Cardiovascular 158 127 60.6% 7.1% 229 152 26.3% 11.7% 121 89 52.8% 44.6% 78 58 84.5% 84.5%

Oncology 919 651 63.9% 6.7% 1,451 827 28.3% 10.5% 383 221 45.2% 37.0% 142 104 81.7% 81.7%

Total 2,541 1,918 64.5% 10.4% 3,743 2,268 32.4% 16.2% 1,554 975 60.1% 50.0% 908 659 83.2% 83.2%

Lead indications

Otherf 193 146 75.3% 24.5% 273 157 50.3% 32.5% 174 115 74.8% 64.6% 122 81 86.4% 86.4%

Infectious disease 228 181 66.9% 19.3% 248 135 45.9% 28.8% 127 76 69.7% 62.8% 94 70 90.0% 90.0%

Respiratory 79 66 63.6% 16.3% 120 76 31.6% 25.6% 40 20 85.0% 81.0% 29 21 95.2% 95.2%

Autoimmune 165 127 67.7% 15.4% 178 102 37.3% 22.8% 77 52 80.8% 61.1% 56 37 75.7% 75.7%

Endocrine 188 152 61.2% 14.5% 226 155 38.1% 23.8% 122 78 69.2% 62.4% 78 51 90.2% 90.2%

Oncology 489 334 68.9% 13.2% 527 298 42.3% 19.1% 193 106 54.7% 45.3% 85 58 82.8% 82.8%

Neurology 301 228 62.7% 12.3% 339 218 34.4% 19.6% 191 124 66.9% 56.8% 137 106 84.9% 84.9%

Cardiovascular 127 102 62.7% 8.7% 159 106 27.4% 13.8% 85 62 56.5% 50.6% 63 48 89.6% 89.6%

Total 1,770 1,336 66.5% 15.3% 2,070 1,247 39.5% 23.1% 1,009 633 67.6% 58.4% 664 472 86.4% 86.4%
aCategories are listed from highest to lowest LOA from phase 1 for all indications (lead and nonlead). bNumber of indications identified. cTotal number of transitions used to calculate the success rate, the n value noted in the 
text. The difference between ‘Total in phase’ and ‘Advanced or suspended’ is the number of indications that remain in development. dProbability of successfully advancing to the next phase. eProbability of FDA approval for drugs 
in this phase of development. fIncludes allergy, gastroenterology, ophthalmology, dermatology, obstetrics/gynecology and urology.
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83% cited efficacy or safety. Furthermore, 
we analyzed the time to drug approval after 
receiving a first complete response letter and 
found a 15-month average delay across all 
diseases with a setback of over one year for 
all diseases except (Supplementary Fig. 1) 
infectious disease (Supplementary Fig. 2 ).

Lead and nonlead indication success rates
Classifying drugs by lead and nonlead indica-
tions results in a selection bias favoring lead 
indication success rates. For lead indications 
that are suspended, and have a nonlead devel-
opment path in-progress, the nonlead indica-
tion is redefined as the lead indication. The 
most advanced nonlead indications therefore 
becomes the lead indications once the initial 
lead is suspended. The BioMedTracker data-
base is maintained as such for real-time view-
ing of pipelines, where it is critical to identify 
a company’s lead program for each compound.

This lead indication annotation method-
ology tracks the most successful develop-
ment path, and closely resembles the best 
case scenario for a specific drug. On the 
other hand, nonlead indication success rates 
understate the importance of lead indica-
tions that were previously designated as 
nonlead. Nonlead indication success rates 
are included in Supplementary Table 2 ,  
and, as expected, have a much lower success 
rate across all phases. For nonlead indi-
cations, the LOA from phase 1 was 4.9%  
(n = 2,132) compared with 15.3% (n = 3,688) 
for lead indications. The most pronounced 
deviation was found in phase 3, where lead 
indications had a 67.6% (n = 633) success 
rate, whereas nonlead indications had a 
46.2% (n = 342) probability of advancing to  
NDA/BLA. The disparity between lead 
and nonlead success rates is noteworthy, 
and the accuracy of nonlead rates must 

be viewed in the context of the selection 
methodology.

DISCUSSION
During the time frame of this study, approxi-
mately one development path in ten (10.4%) 
that enters clinical development in phase 1 
is expected to advance to FDA approval. We 
also analyzed lead indication data and found 
nearly a one-in-six (15.3%) probability a drug 
will advance from phase 1 to FDA approval. 
We believe that the lower success rate for all-
indication development paths more accurately 
reflects drug development success rates in 
industry and is particularly important when 
considering the cost and time of unsuccessful 
clinical trials.

One limitation of this study is the direct 
comparison of these data and methodology 
on a year-by-year or decade-by-decade basis. 
For example, a program was designated as 

Table 6  Phase success and LOA for oncology and non-oncology disease groups
Phase 1 to phase 2 Phase 2 to phase 3 Phase 3 to NDA/BLA NDA/BLA to approval

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

FDA classificatione

All indications 2,541 1,918 64.5% 10.4% 3,743 2,268 32.4% 16.2% 1,554 975 60.1% 50.0% 908 659 83.2% 83.2%

Total oncology 919 651 63.9% 6.7% 1,451 827 28.3% 10.5% 383 221 45.2% 37.0% 142 104 81.7% 81.7%

Oncology NMEs 574 402 65.9% 6.6% 948 534 27.5% 10.0% 245 150 46.0% 36.4% 101 77 79.2% 79.2%

Oncology  
biologics

244 177 61.6% 7.3% 346 193 30.6% 11.9% 83 41 43.9% 39.0% 24 18 88.9% 88.9%

Oncology  
non-NMEs

53 39 69.2% 9.4% 76 50 22.0% 13.6% 26 17 70.6% 61.8% 16 8 87.5% 87.5%

Total  
non-oncology

1622 1267 64.8% 12.1% 2,292 1,441 34.8% 18.7% 1,171 754 64.5% 53.8% 766 555 83.4% 83.4%

Non-oncology
NMEs

1011 816 63.4% 7.9% 1,427 936 29.3% 12.4% 586 365 56.2% 42.4% 324 216 75.5% 75.5%

Non-oncology
biologics

328 234 73.5% 19.4% 473 271 43.2% 26.4% 237 141 68.8% 61.1% 135 98 88.8% 88.8%

Non-oncology
non-NMEs

165 129 65.9% 22.7% 279 176 51.7% 34.5% 295 217 76.0% 66.7% 277 219 87.7% 87.7%

BioMedTracker product categoryf

All indications 2,541 1,918 64.5% 10.4% 3,743 2,268 32.4% 16.2% 1,554 975 60.1% 50.0% 908 659 83.2% 83.2%

Total oncology 919 651 63.9% 6.7% 1,451 827 28.3% 10.5% 383 221 45.2% 37.0% 142 104 81.7% 81.7%

Oncology small
molecule NMEs

492 346 66.5% 7.2% 830 466 28.8% 10.9% 219 136 45.6% 37.8% 93 70 82.9% 82.9%

Oncology mAbs 175 125 68.0% 9.3% 245 140 29.3% 13.7% 55 30 50.0% 46.9% 21 16 93.8% 93.8%

Oncology
proteins/peptides

68 50 48.0% 3.4% 108 57 31.6% 7.1% 34 16 37.5% 22.5% 8 5 60.0% 60.0%

Oncology vaccines 41 28 50.0% 1.6% 73 43 39.5% 3.3% 28 12 8.3% 8.3% 1 1 100.0% 100.0%

Total non-oncology 1622 1267 64.8% 12.1% 2,292 1,441 34.8% 18.7% 1,171 754 64.5% 53.8% 766 555 83.4% 83.4%

Non-oncology 
small molecule 
NMEs

843 687 64.9% 7.7% 1,223 817 29.1% 11.9% 506 313 55.3% 40.7% 276 194 73.7% 73.7%

Non-oncology 
mAbs

154 109 72.5% 19.3% 213 128 47.7% 26.6% 92 54 66.7% 55.9% 44 37 83.8% 83.8%

Non-oncology
proteins/ 
peptides

228 178 65.7% 18.0% 321 198 42.4% 27.4% 191 118 69.5% 64.7% 125 72 93.1% 93.1%

Non-oncology  
vaccines

82 57 71.9% 21.8% 87 38 47.4% 30.3% 44 25 64.0% 64.0% 22 19 100.0% 100.0%

aNumber of indications identified. bTotal number of transitions used to calculate the success rate, the n value noted in the text. The difference between ‘Total in phase’ and ‘Advanced or suspended’ is the number of indica-
tions that remain in development. cProbability of successfully advancing to the next phase dProbability of FDA approval for drugs in this phase of development. eOncology and non-oncology disease groups and FDA NME, bio-
logic, and non-NME classifications. Data are presented for all indication development paths. fOncology and non-oncology disease groups and BioMedTracker biochemical categories.
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‘suspended’ when conclusive evidence had 
been gathered regarding a company’s plans to 
discontinue development, or communications 
with regulators were not reinitiated for several 
years. Unfortunately, the timing of annotat-
ing suspended indications and drugs is not 
precise enough to analyze yearly changes in 
success rates. Furthermore, real-time data col-
lection was initiated in 2003; thus, we cannot 
directly compare prior decades using these 
data and must rely on results published in the 
literature.

Many previous studies considered only a 
drug’s most advanced indication to determine 
drug development success rates. Most pub-
lished data from the 1960s to present reported 
success rates ranging from one in five to one 
in eight14–19. For comparison with more 
recent findings, we summarize in Table 3  
the results from DiMasi et al.6, Kola et al.8 and 
Abrantes-Metz et al.9. The most recent pub-
lication on the subject, from DiMasi et al.6, 
reports a nearly one-in-five LOA from phase 
1 (19%, n = 1,316) from 1993 to 2009. In Kola 
et al.8, the authors found an LOA from phase 1 
of 11%, close to the 10.4% reported here for all 
indications. However, given the small number 
of company pipelines (10 versus 835 reported 
here) and lack of information about the num-
ber of drugs advanced or suspended in this 
study, these results were inconclusive. In addi-
tion, the Abrantes-Metz et al.9 data covered 
a similar period as Kola et al.8, 1989 to 2002 
versus 1991 to 2000, respectively, but did not 
report NDA/BLA success rates. If we were to 
conservatively apply the 83.2% NDA/BLA 
success rate found in this study, Abrantes-
Metz et al.9 would yield the highest LOA from 
phase 1 (21%), again near one in five.

Comparing the phase transitions, phase 2  
success rates were consistently lower than 
phase 1, with phase 1 ranging from 65% to 
81%, and phase 2 from 32% to 58%. In this 
study, and in DiMasi et al.6 and Kola et al.8,  

a step-up in phase 3 success rates from phase 2  
rates was observed. Only Abrantes-Metz et al.9  
reported a phase 2 success rate (57.7%) in-
line with phase 3 (56.7%), a result that was 
20 percentage points higher than the phase 2 
success rate in Kola et al.8 (38%) for a similar 
time period (Table 3). There are fewer data 
available to compare NDA/BLA success rates, 
but our result of 83.2% is similar to that of 
Kola et al.8 (77%) and 10% lower than that of 
DiMasi et al.6.

For lead indication success rates, our 
results are similar to that found by DiMasi 
et al.6. Although our LOA from phase 1 for 
lead indications (15.3%) is below DiMasi  
et al.’s6 19% result, it is close to their 16% result 
for self-originated drugs. We also note that 
the 16% success rate for self-originated drugs 
held over multiple time frames (1993–1998 
and 1999–2004) in their studies. One pos-
sible explanation is that success rates for self- 
originated drugs at large pharmaceutical  
companies are less prone to selection bias 
compared with late-stage, in-licensed drugs.

Factors contributing to lower success rates 
found in this study include the large number 
of small biotech companies represented in the 
data, more recent time frame (2003–2011) 
and higher regulatory hurdles for new drugs. 
Small biotech companies tend to develop 
riskier, less validated drug classes and targets, 
and are more likely to have less experienced 
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Figure 4 Root-cause analysis for 359 phase 3  
and 95 NDA/BLA suspended programs. A 
program was designated as ‘suspended’ when 
conclusive evidence had been gathered regarding 
a company’s plans to discontinue development 
or communications with regulators were not 
reinitiated for several years.

Table 7  Phase success and LOA for oncology subgroups and cancer types
Phase 1 to phase 2 Phase 2 to phase 3 Phase 3 to NDA/BLA NDA/BLA to approval

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

All indications 2,541 1,918 64.5% 10.4% 3743 2268 32.4% 16.2% 1554 975 60.1% 50.0% 908 659 83.2% 83.2%

Total oncology 919 651 63.9% 5.4% 1451 827 28.3% 8.5% 383 147 36.7% 30.0% 142 104 81.7% 81.7%

Total solid tumors 668 483 66.7% 5.7% 1114 636 26.3% 8.6% 299 172 41.3% 32.7% 88 67 79.1% 79.1%

Renal cell cancer (RCC) 20 15 86.7% 18.4% 54 33 30.3% 21.2% 15 10 70.0% 70.0% 7 6 100.0% 100.0%

Head and neck cancer 6 5 100.0% 14.3% 23 12 50.0% 14.3% 14 7 42.9% 28.6% 3 3 66.7% 66.7%

Hepatocellular (liver) cancer 
(HCC)

18 15 73.3% 6.6% 39 25 36.0% 9.0% 12 4 25.0% 25.0% 1 1 100.0% 100.0%

Breast cancer 54 47 68.1% 5.7% 119 61 21.3% 8.4% 34 25 56.0% 39.2% 14 10 70.0% 70.0%

Non-small cell lung cancer 
(NSCLC)

63 55 87.3% 5.7% 161 94 29.8% 6.5% 46 23 26.1% 21.7% 11 6 83.3% 83.3%

Prostate cancer 42 8 71.0% 5.6% 103 24 20.9% 7.8% 25 8 56.3% 37.5% 11 3 66.7% 66.7%

Colorectal cancer (CRC) 45 37 62.2% 5.1% 87 56 21.4% 8.2% 18 13 38.5% 38.5% 4 4 100.0% 100.0%

Ovarian cancer 31 25 68.0% 4.6% 72 37 27.0% 6.8% 15 8 25.0% 25.0% 3 1 100.0% 100.0%

Pancreatic cancer 29 24 75.0% 2.3% 66 36 30.6% 3.1% 19 10 20.0% 10.0% 2 2 50.0% 50.0%

Total hematological tumors 216 152 58.6% 9.9% 317 179 34.6% 16.9% 78 45 55.6% 48.8% 48 33 87.9% 87.9%

Multiple myeloma (MM) 43 29 69.0% 9.7% 48 30 23.3% 14.0% 13 5 60.0% 60.0% 5 4 100.0% 100.0%

Non-Hodgkin’s lymphoma 
(NHL)

38 28 57.1% 8.5% 62 35 40.0% 14.8% 19 9 44.4% 37.0% 8 6 83.3% 83.3%

Chronic lymphocytic leuke-
mia (CLL)

17 12 50.0% 7.3% 41 24 29.2% 14.6% 10 8 62.5% 50.0% 7 5 80.0% 80.0%

Myelodysplastic syndrome 
(MDS)

12 7 71.4% 4.8% 22 9 33.3% 6.7% 6 5 20.0% 20.0% 4 3 100.0% 100.0%

aNumber of indications identified. bTotal number of transitions used to calculate the success rate, the n value noted in the text. The difference between ‘Total in phase’ and ‘Advanced or suspended’ is the number of indications 
that remain in development. cProbability of successfully advancing to the next phase. dProbability of FDA approval for drugs in this phase of development.
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improved overall survival, but lack well- 
validated surrogate markers for this outcome. 
On the other hand, disease areas with vali-
dated surrogate markers tend to have higher 
phase 3 success rates. For example, studies of 
infectious diseases such as hepatitis C and 
HIV that use viral load as a primary endpoint 
as well as glycosylated hemoglobin (HbA1c) 
in diabetes show higher success rates.

Oncology is a particularly challenging 
disease area in which to achieve phase 3 suc-
cess. The FDA requires overall survival as the 
primary endpoint in most pivotal oncology 
studies. Crossover designs that allow patients 
who progress on the comparator arm to cross 
over and receive the investigational drug, or 
patients receiving additional approved and 
experimental salvage therapies, also make it 
more difficult to design well-controlled phase 
3 studies with overall survival as a primary 
endpoint. Furthermore, current animal mod-
els (e.g., xenograft tumor models in mice) 
can be poor predictors of clinical outcomes in 
humans. Additionally, recent scientific reports 
show that certain types of cancer, which were  
previously thought of as one disease, may actu-
ally comprise several subtypes of disease with 
different etiologies. For example, NSCLC is now 
considered by many oncologists to be at least 
ten different mutation-specific diseases, and 
thus it is not surprising that drugs for NSCLC 
have one of the lowest LOAs from phase 1 of all 
oncology indications in Table 7  (ref. 20).

development teams and fewer resources than 
large pharmaceutical corporations. The past 
nine-year period has been a time of increased 
clinical trial cost and complexity for all drug 
development sponsors, and this likely contrib-
utes to the lower success rates than previous 
periods. In addition, an increasing number of 
diseases have higher scientific and regulatory 
hurdles as the standard of care has improved 
over the past decade. More clinical studies 
are comparative in nature and published data 
show clinical trials are more complex today 
than in previous decades7. The time frame in 
this study also coincides with the shift toward 
greater regulatory uncertainty and stronger 
emphasis on safety at the FDA since the 2004 
Vioxx (rofecoxib) recall. For smaller compa-
nies, financing challenges in the past several 
years have also affected development progres-
sion decisions. Phase success rates reported in 
this study are based on transition rates, not 
necessarily resulting from safety or efficacy 
data. Transition rates are negatively affected 
by early development termination due to 
commercial and regulatory uncertainty as 
well as economic and portfolio management 
decisions.

Lower success rates found when analyz-
ing all indications likely results from includ-
ing nonlead and/or secondary indications. 
Nonlead development paths have far lower 
success rates compared with lead programs. 
One possible explanation is that many com-

panies first develop drugs in lead indications 
where the strongest scientific rationale and 
early efficacy signals are found. Lead indica-
tions are also often smaller, better-defined 
patient populations. After initial success in 
these populations, companies may decide to 
investigate nonlead indications, which may 
not have the same scientific support, homog-
enous patient population or development 
and regulatory path as the lead indication. 
Nonlead success rates are also important to 
monitor as many of these indications can be 
moved directly into late-stage trials, where 
most clinical development costs occur. 
Furthermore, our research suggests that these 
late-stage trials for nonlead indications often 
enroll a greater number of patients than lead 
indications.

Phase 3 success rates. In Figures 1 and 2 , we 
show that phase 3 success rates are 60% for 
drugs for all indications, but only around 50% 
in oncology or cardiology. Such low phase 3 
success rates for these diseases are concern-
ing as 35% of all R&D spending is now spent 
on phase 3 development, and phase 3 trials 
account for 60% of all clinical trial costs3. 
Some of the low phase 3 rates may be attrib-
uted to trial design factors and insufficient 
communication between sponsors and regu-
lators during their end-of-phase-2 meetings. 
Both oncology and cardiology, for example, 
now require outcome studies looking for 

Table 8  Phase success and LOA for neurology and autoimmune diseases (broken further into rheumatoid arthritis and type II diabetes)
Phase 1 to phase 2 Phase 2 to phase 3 Phase 3 to NDA/BLA NDA/BLA to approval

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

Total in 
phasea

Advanced 
or sus-

pendedb
Phase 

successc
Phase 
LOAd

All indications 2,541 1,918 64.5% 10.4% 3,743 2,268 32.4% 16.2% 1,554 975 60.1% 50.0% 908 659 83.2% 83.2%

Total neurology 389 298 62.4% 9.4% 520 348 30.2% 15.0% 285 188 60.6% 49.9% 192 152 82.2% 82.2%

Psychiatric disease 97 80 60.0% 7.2% 148 116 23.3% 12.0% 83 49 63.3% 51.6% 57 49 81.6% 81.6%

Pain 96 73 67.1% 10.7% 113 79 27.8% 15.9% 67 46 67.4% 57.2% 42 33 84.8% 84.8%

Other 196 136 58.8% 9.8% 259 153 36.6% 16.7% 135 93 55.9% 45.5% 93 70 81.4% 81.4%

Total autoimmune 
disease

241 178 68.0% 12.7% 350 215 34.0% 18.7% 149 95 68.4% 55.0% 88 61 80.3% 80.3%

Total autoimmune 
disease NMEs

111 88 62.5% 5.2% 151 86 22.1% 8.3% 38 20 50.0% 37.5% 16 8 75.0% 75.0%

Total autoimmune 
disease biologics

116 80 73.8% 22.5% 171 111 45.0% 30.5% 89 56 75.0% 67.7% 53 41 90.2% 90.2%

Total autoimmune 
disease non-NMEs

10 8 87.5% 7.9% 22 16 25.0% 9.0% 21 18 72.2% 36.1% 18 12 50.0% 50.0%

Total rheumatoid 
arthritis

65 54 74.1% 10.3% 102 63 15.9% 13.9% 18 8 87.5% 87.5% 10 5 100.0% 100.0%

Rheumatoid arthritis 
NMEs

30 29 69.0% NA 46 29 10.3% NA 4 1 100.0% NA 2 0 NA NA

Rheumatoid arthritis 
biologics

32 24 79.2% 15.9% 49 29 24.1% 20.1% 13 6 83.3% 83.3% 7 5 100.0% 100.0%

Total type II diabetes 110 89 60.7% 9.3% 128 84 29.8% 15.3% 53 37 59.5% 51.4% 31 22 86.4% 86.4%

Diabetes NMEs 83 68 63.2% 7.5% 100 69 29.0% 11.8% 35 25 56.0% 40.7% 15 11 72.7% 72.7%
aNumber of indications identified. bNumber of transitions used to calculate the success rate, the n value noted in the text. The difference between ‘Total in phase’ and ‘Advanced or suspended’ is the number of indications that 
remain in development. cProbability of successfully advancing to the next phase. dProbability of FDA approval for drugs in this phase of development. NA, data not available.
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Clinical trials targeting heterogeneous 
patient populations may have lower suc-
cess rates than trials identifying respond-
ers within a population through the use 
of biomarkers. As predictability of clini-
cal outcomes increases through the use of 
molecular diagnostics in earlier testing, it is 
possible that phase 3 trial success rates will 
rise. Furthermore, the adoption of adaptive 
trial design may facilitate the identification 
of targeted subsets of patient populations 
before study completion. According to the 
FDA’s draft guidance for industry, issued in 
February 2010, adaptive trial design may 
make clinical studies more efficient (e.g., 
shorter duration and fewer patients), more 
likely to demonstrate an effect of the drug 
or more informative (e.g., providing broader 
dose-response information)21.

Root causes of phase 3 and NDA/BLA 
development failures. To gain a better 
understanding of the causes that lead com-
panies to discontinue drug development, we 
further analyzed publically available infor-
mation for the 359 phase 3 and 95 NDA/
BLA suspensions included in this study. We 
classified each discontinued development 
program into four categories based on the 
primary reason for suspension including: 
efficacy, safety, commercial and unknown 
(Fig. 4 ).

Although it was difficult to objectively 
determine if a phase 3 study did not reach 
an endpoint due to poor study design or the 
drug’s biological activity, we found that over 
half of the 359 suspensions were attribut-
able to some measure of efficacy. Indeed, a 
detailed analysis of the specific inputs, ratio-
nale and history for each program would be 
needed to identify issues related to poor 
trial design. Furthermore, public informa-
tion is not available to assess the degree of 
communication with regulators, adherence 
to recommendations, changes to prior stan-
dards and input from phase 2 data that would 
inform the design of a phase 3 study.

We found that 18% of the phase 3 suspen-
sions resulted from a company’s commercial 
decision to not file for approval. We do not 
know the degree to which regulatory uncer-
tainty factored into these decisions, but 
recognize its important impact on portfo-
lio management, funding and commercial 
opportunities due to the increased time and 
costs of drug development.

Safety was the least likely cause for suspen-
sion in phase 3 (9%), perhaps due to signifi-
cant adverse events identified earlier in drug 
development. Approximately 20% of the sus-
pensions occurred without publicly available 
information citing the reason for failure.

We also analyzed the 95 suspended NDA/
BLA filings in the data set and found that 
approximately one-third of failures were 
attributable to safety concerns raised by 
regulators compared to only 9% in phase 3. 
Our analysis also revealed that around half 
involved cases where the FDA requested 
additional trials. One interpretation of 
these data is that sponsors file for regulatory 
approval believing their drug meets safety 
guidelines, whereas regulators remain con-
cerned about safety, illustrating insufficient 
communication between regulators and 
sponsors. During the period of this study, 
mainly after the 2004 Vioxx recall, many 
industry observers have discussed how the 
benefit-to-risk pendulum has swung toward 
risk, with a greater focus on safety in the reg-
ulatory assessment. Some examples of issues 
brought forward by regulators were the need 
for longer-term data, inclusion of additional 
study arms, inclusion of different patient age 
and at-risk populations, and increases in the 
number of patients studied.

Further analysis of failures by lead or non-
lead indication, disease, modality and com-
pany type were not performed because the 
small sample size has limitations and subjects 
the results to molecular and therapeutic class–
specific issues. Future studies will allow us to 
identify trends in failed clinical programs as 
the sample size becomes more reliable.

Conclusions
The data presented in this study suggest 
industry-wide productivity may have declined 
from previous estimates. Achieving FDA 
approval for only one-in-ten drug indications 
that enter the clinic is a concerning statistic 
for drug developers, regulators, investors and 
patients. We believe progress in clinical sci-
ence and regulatory risk-benefit assessment 
can improve success rates. Greater flexibil-
ity with alternative surrogate endpoints, the 
utilization of adaptive clinical trial design 
and improved methodologies for assessing 
patient benefit-to-risk are some areas where 
improvements can be made. In addition, 
improvements in communication between 
sponsors and regulators could help reduce 
regulatory applications that lack safety or 
efficacy data that are later requested by regu-
lators. Simultaneously, improvements in basic 
science can enable improvements in success 
rates. For example, more predictive animal 
models, earlier toxicology evaluation, bio-
marker identification and new targeted deliv-
ery technologies may increase future success 
in the clinic.
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The  research  and  development  costs  of 106 randomly  selected  new  drugs  were  obtained  from  a  survey
of  10  pharmaceutical  firms.  These  data  were  used  to  estimate  the  average  pre-tax  cost  of new  drug  and
biologics  development.  The costs  of compounds  abandoned  during  testing  were  linked  to  the  costs  of
compounds  that obtained  marketing  approval.  The  estimated  average  out-of-pocket  cost  per  approved
new  compound  is  $1395  million  (2013  dollars).  Capitalizing  out-of-pocket  costs  to  the  point  of marketing
approval  at  a real  discount  rate  of 10.5%  yields  a total  pre-approval  cost  estimate  of  $2588  million  (2013
dollars).  When  compared  to the  results  of  the  previous  study  in  this  series,  total  capitalized  costs  were
shown  to  have  increased  at an annual  rate  of  8.5%  above  general  price inflation.  Adding  an  estimate  of
post-approval  R&D  costs  increases  the  cost  estimate  to  $2870  million  (2013  dollars).

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

We  provide an updated assessment of the value of the resources
expended by industry to discover and develop new drugs and bio-
logics, and the extent to which these private sector costs have
changed over time. The costs required to develop these new prod-
ucts clearly play a role in the incentives to invest in the innovative
activities that can generate medical innovation. Our prior studies
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who  kindly gave their time when we needed some of the responses clarified. All
errors and omissions are the responsibility of the authors. The Tufts Center for
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research-based industry. Tufts CSDD’s financial disclosure statement can be found
here: http://csdd.tufts.edu/about/financial disclosure. The authors and Tufts CSDD
did  not receive any external funding to conduct this study. The R&D cost and expen-
diture data for individual compounds and companies are proprietary and cannot be
redistributed. Other data used were obtained from subscription databases and the
Food and Drug Administration (FDA) and other websites.
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Tufts University, 75 Kneeland Street, Suite 1100, Boston, MA  02111, United States.
Tel.: +1 617 636 2116; fax: +1 6176362425.

E-mail address: joseph.dimasi@tufts.edu (J.A. DiMasi).

also have been used by other researchers, including government
agencies, to analyze various policy questions (US Congressional
Budget Office, 1998, 2006).

The full social costs of discovering and developing new com-
pounds will include these private sector costs, but will also include
government-funded and non-profit expenditures on basic and
clinical research that can result in leads and targets which drug
developers can explore. These additional costs can be substantial.1

However, it is difficult to identify and measure non-private expend-
itures that can be linked to specific new therapies. Thus, we focus
here on the private sector costs.

The methodological approach used in this paper follows that
used for our previous studies, although we apply additional statis-
tical tests to the data (Hansen, 1979; DiMasi et al., 1991, 1995a,b,
2003, 2004; DiMasi and Grabowski, 2007). Because the methodolo-
gies are consistent, we  can confidently make comparisons of the
results in this study to the estimates we found for the earlier stud-
ies, which covered earlier periods, to examine and illustrate trends

1 For example, for fiscal year 2013, the United States National Institutes of Health
(NIH) spent nearly $30 billion on the activities that it funds (http://officeofbudget.od.
nih.gov/pdfs/FY15/Approp%20%20History%20by%20IC%20through%20FY%202013.
pdf).

http://dx.doi.org/10.1016/j.jhealeco.2016.01.012
0167-6296/© 2016 Elsevier B.V. All rights reserved.
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in development costs. These studies used compound-level data on
the cost and timing of development for a random sample of new
drugs first investigated in humans and annual company pharma-
ceutical R&D expenditures obtained through surveys of a number
pharmaceutical firms.

We  analyze private sector R&D activities as long-term invest-
ments. The industrial R&D process is marked by substantial
financial risks, with expenditures incurred for many development
projects that fail to result in a marketed product. Thus, our approach
explicitly links the costs of unsuccessful projects to those that are
successful in obtaining marketing approval from regulatory author-
ities. In addition, the pharmaceutical R&D process is very lengthy,
often lasting a decade or more (DiMasi et al., 2003). This makes
it essential to model accurately how development expenses are
spread over time.

Given our focus on resource costs and how they have changed
over time, we develop estimates of the average pre-tax cost of
new drug development and compare them to estimates covering
prior periods. We  corroborated the basic R&D cost results in this
study by examining the representativeness of our sample firms and
our study data, and by incorporating a number of independently
derived results and data relating to the industry and the drug devel-
opment process into analyses that provide rough comparators for
at least components of our cost results. The details of those analyses
are provided in our online supplement.

The remainder of this paper is organized as follows. We  briefly
discuss the literature on pharmaceutical industry R&D costs since
our 2003 study in Section 2. Section 3 briefly outlines the standard
paradigm for the drug development process. In Section 4 we
describe the survey sample data and the population from which
they were drawn, and briefly outline the methodology used to
derive full R&D cost estimates from data on various elements of the
drug development process. We  present base case pre- and post-
marketing approval R&D cost estimates in Section 5. Sensitivity
analyses are presented in Section 6. We  describe the representa-
tiveness of our data, various approaches to validating our results,
and responses to various critiques in Section 7. Finally, we summa-
rize our findings in Section 8.

2. Previous studies of the cost of pharmaceutical
innovation

Much of the literature on the cost of pharmaceutical innovation
dating back decades has already been described by the authors in
their previous two studies (DiMasi et al., 1991, 2003). The interested
reader can find references and discussions about the prior research
in those studies. The earliest studies often involved a case study
of a single drug (typically without accounting for the cost of failed
projects) or they analyzed aggregate data. We  will focus here on
studies and reports that have emerged since DiMasi et al. (2003)
that involve the use of new data for at least some parts of the R&D
process. The basic elements of these analyses are shown in Table 1.

Adams and Brantner (2006, 2010) sought to assess the validity
of the results in DiMasi et al. (2003) with some alternative data.
Specifically, in their 2006 article, they used a commercial pipeline
database to separately estimate clinical approval and phase attri-
tion rates, as well as phase development times.2 They found a
similar overall cost estimate ($868 million versus $802 million in
year 2000 dollars).3 The authors followed that study with another

2 For mean out-of-pocket phase costs, they used the estimates in DiMasi et al.
(2003).

3 The Adams and Brantner (2006) study used records in the pipeline database that
were reported to have entered some clinical testing phase from 1989 to 2002. Thus,
they did not follow the same set of drugs through time. The data for the commercial

study that featured clinical phase out-of-pocket cost estimates
derived from regressions based on publicly available data on com-
pany R&D expenditures (Adams and Brantner, 2010). They found
a somewhat higher overall cost estimate ($1.2 billion in year 2000
dollars).4

In a paper authored by two  of the authors of this study (DiMasi
and Grabowski, 2007), we provided a first look at the costs of
developing biotech products (specifically, recombinant proteins
and monoclonal antibodies). The methodological approach was the
same as that used for our studies of traditional drug development.
We used some data from DiMasi et al. (2003) combined with new
data on the costs of a set of biotech compounds from a single large
biopharmaceutical company. Biotech drugs were observed to have
a higher average clinical success rate than small molecule drugs, but
this was largely offset by other cost components. We  found that the
full capitalized cost per approved new compound was similar for
traditional and biotech development ($1.3 billion for biotech and
$1.2 billion for traditional development in year 2005 dollars), after
adjustments to compare similar periods for R&D expenditures.

The other studies shown in Table 1 are discussed in detail in
the online supplement. One important finding emerging from the
survey of cost studies in Table 1 is that clinical success rates are sub-
stantially lower for the studies focused on more recent periods. This
observed trend is consistent with other analyses of success prob-
abilities (DiMasi et al., 2010; DiMasi et al., 2013; Hay et al., 2014;
Paul et al., 2010) and our analysis below. Average R&D (inflation-
adjusted) cost estimates are also higher for studies focused on more
recent periods, suggesting a growth in real R&D costs. While sug-
gestive, these studies are not strictly comparable to our earlier
analyses of R&D costs given methodological differences and data
omissions that are discussed in the online supplement (Appendix
A).

3. The new drug development process

The new drug development process need not follow a fixed
pattern, but a standard paradigm has evolved that fits the pro-
cess well in general. We  have described the process in some
detail in previous studies, and the FDA’s website contains a
schematic explaining the usual set of steps along the way from
test tube to new compound approval (http://www.fda.gov/
Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/
ucm053131.htm). Marketing approval applications for inves-
tigational compounds submitted to the FDA for review by
manufacturers are referred to as new drug applications (NDAs)
or biologic license applications (BLAs), depending on the type of
product.

In basic form, the paradigm portrays new drug discovery and
development as proceeding along a sequence of phases and activ-
ities (some of which often overlap). Basic and applied research
initiate the process with discovery programs that result in the
synthesis or isolation of compounds that are tested in assays and
animal models in preclinical development. We  do not have the level

pipeline databases are also thin prior to the mid-1990s. The DiMasi et al. (2003)
study covered new drugs that had first entered clinical testing anywhere in the
world from 1983 to 1994 and followed the same set of drugs through time.

4 However, the authors interpreted their estimate as a marginal, as opposed to
an average, drug cost. The concept, though, of marginal cost has an unclear mean-
ing  here. With high fixed costs and a development process that varies by drug, it is
difficult to understand what marginal pharmaceutical R&D cost means in this con-
text. It seems that the relevant marginal concept here is marginal profitability. The
marginally profitable drug could have a very high or a very low cost. What’s more,
marginal profitability may only have meaning at the firm, not the industry, level.
The cost of a marginally profitable drug in the pipeline of a firm may  be high for one
firm  and low for another firm.
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Table 1
Prior studies and analyses of pharmaceutical R&D costs (2003–2012).

Study Study period Clinical success rate Real cost of capital Inflation adjustment Cost estimate

DiMasi et al. (2003) First-in-humans, 1983–1994 21.5% 11.0% 2000 dollars $802 million
Adams and Brantner (2006) First-in-humans, 1989–2002 24.0% 11.0% 2000 dollars $868 million
Adams and Brantner (2010) Company R&D expenditures, 1985–2001 24.0% 11.0% 2000 dollars $1.2 billion
DiMasi and Grabowski (2007) First-in-humans, 1990–2003 (large molecule) 30.2% (large molecule) 11.5% 2005 dollars $1.2 billion
Gilbert et al. (2003) 2000–2002 (launch) 8.0% NA 2003 dollars $1.7 billion
O’Hagan and Farkas (2009) 2009 (launch) NA NA 2009 dollars $2.2 billion
Paul et al. (2010) ≈2007 11.7% 11.0% 2008 dollars $1.8 billion
Mestre-Ferrandiz et al. (2012) In clinical development, 1997–1999 10.7% 11.0% 2011 dollars $1.5 billion

of granularity to disaggregate R&D expenditure data into discovery
and preclinical development testing costs, so for the purposes of
this study, as in prior studies, discovery and preclinical develop-
ment costs are grouped and referred to as pre-human costs.5

Clinical (human) testing typically proceeds through three suc-
cessive, sometimes overlapping phases. Historically, human testing
has often been initiated first outside the United States (DiMasi,
2001). For any of these clinical phases, pharmaceutical compa-
nies may  pursue development of their investigational compounds
in multiple indications prior to and/or after the initial indication
approval.

4. Data and methods

Ten multinational pharmaceutical firms of varying sizes
provided data through a confidential survey of their new drug
and biologics R&D costs.6 Data were collected on clinical phase
expenditures and development phase times for a randomly
selected sample of the investigational drugs and biologics of
the firms participating in the survey.7 The sample was  taken
from a Tufts Center for the Study of Drug Development (CSDD)
database of the investigational compounds of top 50 firms. Tufts
CSDD gathered information on the investigational compounds
in development and their development status from commercial
pipeline intelligence databases (IMS  R&D Focus and Thomson
Reuters Cortellis database [formerly the IDdb3 database]), pub-
lished company pipelines, clinicaltrials.gov, and web searches.
Cost and time data were also collected for expenditures on the
kind of animal testing that often occurs concurrently with clin-
ical trials.8 The compounds chosen were self-originated in the
following sense. Their development from synthesis up to initial
regulatory marketing approval was conducted under the auspices
of the surveyed firm. This inclusion criterion is broader than it
might at first seem since it includes compounds of firms that
were acquired or merged with the survey firm during develop-
ment and drugs that originated with the survey firm and were
co-developed (and for which full cost data were available).9

Licensed-in and co-developed compounds without partner

5 We capture out-of-pocket discovery costs with our data, but the pre-synthesis
discovery period is highly variable with no clear starting point. For our analyses
we  began our representative discovery and development timeline at the point of
compound synthesis or isolation. Thus, our estimates of time costs are somewhat
conservative.

6 Using pharmaceutical sales in 2006 to measure firm size, 5 of the survey firms
are  top 10 companies, 7 are top 25 firms, and 3 are outside the top 25 (Pharmaceutical
Executive,  May  2007).

7 A copy of the survey instrument can be found in our online supplement
(Appendix G).

8 Long-term teratogenicity and carcinogenicity testing may  be conducted after
the initiation of clinical trials, and is often concurrent with phase I and phase II
testing.

9 The criterion also does not preclude situations in which the firm sponsors trials
that are conducted by or in collaboration with a government agency, an individual
or  group in academia, a non-profit institute, or another firm.

clinical cost data were excluded because non-survey firms would
have conducted significant portions of the R&D.10

We  also collected data from the cost survey participants on their
aggregate annual pharmaceutical R&D expenditures for the period
1990–2010. The firms reported on total annual R&D expenditures
broken down by expenditures on self-originated new drugs, biolo-
gics, diagnostics, and vaccines. Data were also provided on annual
R&D expenditures for licensed-in or otherwise acquired new drugs,
and on already-approved drugs. Annual expenditures on self-
originated new drugs were further decomposed into expenditures
during the pre-human and clinical periods.

The survey firms accounted for 35% of both top 50 firm phar-
maceutical sales and pharmaceutical R&D expenditures. Of the
106 investigational compounds included in the project dataset,
87 are small molecule chemical entities (including three synthetic
peptides), and 19 are large molecule biologics (10 monoclonal anti-
bodies and nine recombinant proteins). For ease of exposition, we
will refer to all compounds below as new drugs, unless otherwise
indicated. Initial human testing anywhere in the world for these
compounds occurred during the period 1995–2007. Development
costs were obtained through 2013.

We  selected a stratified random sample of investigational
compounds.11 Stratification was  based on the status of testing as of
the end of 2013. Reported costs were weighted to reflect the devel-
opment status of compounds in the population relative to those in
the cost survey sample, so that knowledge of the distribution of
development status in the population from which the sample was
drawn was  needed. The population is composed of all investiga-
tional compounds in the Tufts CSDD investigational drug database
that met  study criteria: the compounds were self-originated and
first tested in humans anywhere in the world from 1995 to 2007.
We found 1442 investigational drugs that met these criteria. Of
these compounds, 103 (7.1%) have been approved for marketing,
13 (0.9%) had NDAs or BLAs that were submitted and are still active,
11 (0.8%) had NDAs or BLAs submitted but abandoned, 576 (39.9%)
were abandoned in phase I, 19 (1.3%) were still active in phase I, 492
(34.1%) were abandoned in phase II, 84 (5.8%) were still active in
phase II, 78 (5.4%) were abandoned in phase III, and 66 (4.6%) were
still active in phase III. For both the population and the cost survey
sample, we  estimated approval and discontinuation shares for the
active compounds by phase so that the population and sample dis-
tributions consisted of shares of compounds that were approved or
discontinued in phase I, phase II, phase III, or regulatory review. The

10 Large and mid-sized pharmaceutical firms much more often license-in than
license-out new drug candidates. Firms that license-in compounds for further devel-
opment pay for the perceived value of the prior R&D typically through up-front fees,
development and regulatory milestone payments, and royalty fees if the compound
should be approved for marketing. For a breakdown of new drugs and biologics
approved in the United States in the 2000s by business arrangements among firms
initiated during clinical development, see DiMasi et al. (2014).

11 To ease the burden of reporting and increase the likelihood that firms would
respond, we  limited the number of compounds to be reported on to a maximum of
15  for any firm (with fewer compounds for smaller firms).
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cost survey sample was purposely weighted toward compounds
that lasted longer in development to increase the amount of infor-
mation on drugs that reached late-stage clinical testing. Weights,
determined as described above, were then applied to the com-
pounds in the cost dataset so that the results would reflect the
development status distribution for the population from which the
sample was drawn.

Some firms were not able to provide full phase cost data for
every new drug sampled. For example, phase I cost data were avail-
able for 97 of the 106 new drugs in the dataset (92%). Of the 82
compounds in the dataset that had entered phase II, cost data were
available for 78 (95%). For phase III, cost data were available for 42
of the 43 compounds that entered the phase (98%). However, we
had cost data for at least one phase for each of the 106 drugs in the
sample. In aggregate, we had cost data for all phases entered for 94
of the 106 compounds (89%).12 In addition, five compounds were
still active in a phase at the time that data were reported. For these
drugs it is likely that there will be some additional future costs for
the drug’s most recent phase. Thus, for this reason our cost esti-
mates are likely to be somewhat conservative. However, given the
small number of drugs in this category and the fact that the impact
would be on only one phase for each of these drugs, our overall cost
estimates are not likely to be substantially affected.

The methodology that we use to estimate development costs
is the same as the approach used in our earlier studies (Hansen,
1979; DiMasi et al., 1991, 2003). We  refer the reader to the earlier
studies and to our online supplement (Appendix A) for details. The
methodology results in a full risk-adjusted cost per approved new
compound that also takes into account time costs. That is, we link
the cost of compound failures to the cost of the successes (inves-
tigational compounds that attain regulatory marketing approval),
and we utilize a representative time profile along with an indus-
try cost of capital to monetize the cost of the delay between
when R&D expenditures are incurred and when returns to the
successes can first be realized (date of marketing approval). We
refer to the sum of out-of-pocket cost (actual cash outlays) and
time cost per approved new compound as the capitalized cost per
approved new compound. The full capitalized cost estimate is built
through a number of estimates of various components of the drug
development process. These individual component estimates are
interesting as objects of analysis in their own right, and we  provide
estimates for those components.

5. Base case R&D cost estimates

5.1. Out-of-pocket clinical cost per investigational drug

To determine expected costs, we need estimates of the clinical
development risk profile. We  examined the dataset of 1442 self-
originated compounds of top 50 pharmaceutical firms described
above and estimated the phase transition probabilities shown in
Fig. 1. The overall probability of clinical success (i.e., the likelihood
that a drug that enters clinical testing will eventually be approved)
was estimated to be 11.83%. This success rate is substantially lower
than the rate of 21.50% estimated for the previous study, but con-
sistent with several recent studies of clinical success rates.13 Such
an increase in overall risk will contribute greatly to an increase in
costs per approved new drug, other things equal.

12 Phase cost correlation results presented in the online supplement, together with
an  examination of relative phase costs for drugs that had some missing phase cost
data, suggest that our phase cost averages (exclusive of missing data) are conserva-
tive.

13 See, for example, Paul et al. (2010), DiMasi et al. (2013), and Hay et al. (2014).

Fig. 1. Estimated phase transition probability and overall clinical approval suc-
cess rates for self-originated new molecular entity (NME) and new therapeutically
significant biologic entity (NBE) investigational compounds first tested in humans
anywhere from 1995 to 2007.

As described above, we calculated weighted means, medians,
standard deviations, and standard errors for clinical phase costs.
Some of the firms could not separate out long-term animal testing
costs during clinical development, and instead, included these costs
in their phase cost estimates by year. To be consistent, therefore,
for those compounds where animal costs were separately reported,
we allocated those costs to the clinical phases according to when
the animal testing costs were incurred. Thus, the clinical phase
costs presented in Table 2 are inclusive of long-term animal testing
costs.14

Weighted mean and median costs per investigational drug
entering a phase15 increase for later clinical phases, particularly
for phase III (which typically includes a number of large-scale tri-
als). In comparison to our previous study (DiMasi et al., 2003), both
mean and median phase III cost are notably higher relative to the
earlier phases. While the ratio of mean phase III cost to mean phase
I cost was 5.7 for the previous study, it was 10.1 here. Similarly, the
ratio of mean phase III to phase II cost was  3.7 for the earlier study,
but was 4.4 for this study. Mean phase II cost was also higher rela-
tive to phase I cost in the current study compared to the previous
one (2.3 times as high compared to 1.5 times as high).16 Thus, while
mean cost in real dollars for phase I increased 28% relative to the
previous study,17 phase I costs were notably lower relative to both
phase II and phase III for the current study.

As we will see below, the differential in cost per approved new
drug between the two  studies will be much greater than cost per
investigational drug because of the much lower overall clinical
approval success rate. However, our results do show that the impact
is mitigated to some degree by firms failing the drugs that they
do abandon faster for the current study period. The distribution
of clinical period failures for this study were 45.9% for phase I,
43.5% for phase II, and 10.6% for phase III/regulatory review. The

14 When animal testing costs occurred in a year during which costs were incurred
for two  clinical phases, the animal costs were allocated to the two phases according
to  their relative costs for the year.

15 Averages for unweighted costs did not differ greatly from the weighted cost
figures. On an unweighted basis, mean phase I, phase II, and phase III costs were
$29.7 million, $64.7 million, and $253.5 million, respectively.

16 The ratios for median costs for the current study are 11.6 for phase III relative
to  phase I, 4.5 for phase III relative to phase II, and 2.6 for phase II relative to phase
I.  The corresponding ratios for the previous study are 4.5, 3.6, and 1.2, respectively.

17 In real terms, median phase I cost was actually 4% lower for the current study
compared to the previous study.
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Table 2
Average out-of-pocket clinical period costs for investigational compounds (in millions of 2013 dollars).a

Testing phase Mean cost Median cost Standard deviation Standard error Nb Probability of entering phase (%) Expected cost

Phase I 25.3 17.3 29.6 3.0 97 100.0 25.3
Phase II 58.6 44.8 50.8 6.6 78 59.5 34.9
Phase III 255.4 200.0 153.3 34.1 42 21.1 54.0

Total  114.2

a All costs were deflated using the GDP implicit price deflator. Weighted values were used in calculating means, medians, and standard deviations.
b N = number of compounds with cost data for the phase.

Table 3
Nominal and real cost of capital (COC) for the pharmaceutical industry, 1994–2010.

1994 2000 2005 2010

Nominal COC (%) 14.2 14.9 13.3 11.4
Inflation rate (%) 3.1 3.1 2.5 2.0
Real COC (%) 11.1 11.8 10.8 9.4

corresponding figures for the previous study were 36.9% for phase
I, 50.4% for phase II, and 12.6% for phase III/regulatory review.

5.2. Cost of capital estimates

To account for the time value of money in our previous paper
(DiMasi et al., 2003), we utilized an 11% real after-tax weighted
average cost of capital (WACC). In particular, we employed the capi-
tal asset pricing model (CAPM) to estimate the cost of equity capital.
This was combined with the cost of debt, appropriately weighted
with the cost of equity, to yield a representative, pharmaceutical
industry weighted after-tax cost of capital. The resultant parame-
ters were estimated at regular intervals from the mid-1980s to the
year 2000, given the time period spanned by our sample of R&D
projects.

In the present paper, we follow the same methodology to com-
pute WACC. In the current R&D cost analysis, we have a sample
of new drugs that began clinical trials in 1995 through 2007 and
which have an average introduction period in the latter part of
the 2000 decade. Hence, a relevant time period for our cost of
capital is the mid-1990s through 2010. Our analysis yielded an
after-tax weighted cost of capital of 10.5%, moderately lower than
in our last paper. This reflects the fact that the cost of equity cap-
ital has declined in pharmaceuticals since 2000 (as well as for
other industrial sectors). Research intensive industries, including
the pharmaceutical industry, generally finance most of their invest-
ments through equity, rather than through debt. This is the case
even when the cost of debt is significantly below the cost of equity
(Hall, 2002; Vernon, 2004). One of the primary reasons is that
servicing debt requires a stable source of cash flows, while the
returns to R&D activities are skewed and highly variable (Scherer
and Harhoff, 2000; Berndt et al., 2015). Given the low debt-to-
equity ratios that exist for pharmaceutical firms, the cost of equity
component dominates the computed WACC values in Table 3.

To obtain a real cost of capital, we first compute the nominal val-
ues and then subtract the expected rate of inflation. The nominal
cost of capital in 1994 is from a CAPM study by Myers and Howe
(1997). The estimates for 2000, 2005, and 2010 are based on our
own analysis, utilizing a comparable approach, with a large sam-
ple of pharmaceutical firms.18 As this table shows, the estimated
nominal cost of capital for pharmaceuticals was fairly stable during

18 The sample is composed of all publically traded drug firms in the Value Line
Survey which also provides beta values and the other pharma-specific parameters
used in the CAPM calculations for the relevant years. The long-term horizon equity
risk premium, and the yield on long-term government bonds employed in the CAPM
analysis, are from Ibbotson Valuation yearbooks for 2000, 2005, and 2010.

the period 1994–2000 (14.2–14.9%). However, it decreased during
the decade of 2000s, particularly after the global recession occurred
(with a value of 11.4% observed in 2010).

As discussed in DiMasi et al. (2003), the rate of inflation was
above historical values during the first part of the 1980s, but then
receded back to or below historical levels throughout most of the
1990s. Hence, we utilized the long run historical value for inflation
for the expected inflation level in 1994 and 2000 (3.1%), as in our
prior work. For the 2000s decade, inflation was significantly below
historical values. In this case, we employed a 5-year lagged moving
average to compute the expected rate of inflation in 2005 and 2010
(calculated as 2.5% and 2.0%, respectively).

As shown in Table 3, our estimates for the real cost of capital
varied between 9.4% and 11.8% for pharmaceutical firms over the
1994–2010 period. We  elected to use the midpoint of this range,
or approximately 10.5%, as the representative COC to capitalize our
R&D cost estimates.

The focus of our analysis is R&D investment expenditures
and privately financed resources for new drugs undertaken by
the biopharmaceutical industry. Accordingly we  capitalized these
expenditures utilizing a cost of capital estimate based on financial
data from publicly listed firms. Drug development is also spon-
sored and funded by government and non-profit agencies (e.g.,
public–private partnerships devoted to developing medicines for
neglected diseases). To the extent that our cost estimates are
applicable to these ventures, a social rate of discount would be
appropriate to capitalize R&D outlays. We  provide a sensitivity
analysis in Section 6 with respect to a wide spectrum of alternative
cost of capital values.

5.3. Capitalized clinical cost per investigational drug

Opportunity cost calculations for clinical period expenditures
require estimates of average phase lengths and average gaps or
overlaps between successive clinical phases to generate an aver-
age clinical development and regulatory review timeline. Mean
phase lengths and the mean lengths of time between successive
phases are shown in Table 4, along with the associated capitalized
mean phase costs and capitalized expected phase costs by phase
for investigational compounds. The time between the start of clin-
ical testing and submission of an NDA or BLA with the FDA was
estimated to be 80.8 months, which is 12% longer (8.7 months)
than the same period estimated for the previous study. The average
time from the start of clinical testing to marketing approval for our
timeline was 96.8 months for the current study, 7% (6.5 months)
longer than for the earlier study. The difference is accounted for
by shorter FDA approval times. The period for the previous study
included, in part, a period prior to the implementation of the Pre-
scription Drug Use Fee Act of 1992 (PDUFA), and, in part, the early
user fee era for which approval times were somewhat higher than
for later user fee periods (Berndt et al., 2005).19 While the approval

19 The user fee legislation sunsets every 5 years. It has been renewed every 5
years since its original enactment. Performance goals for FDA review of marketing
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Table  4
Average phase times and clinical period capitalized costs for investigational compounds (in millions of 2013 dollars).a

Testing phase Mean phase length Mean time to next phase Capitalized mean phase costb,c Capitalized expected phase costb,c

Phase I 33.1 19.8 49.6 49.6
Phase  II 37.9 30.3 95.3 56.7
Phase  III 45.1 30.7 314.0 66.4

Total  172.7

a All costs were deflated using the GDP implicit price deflator. Weighted values were used in calculating means for costs and phase times. Phase times are given in months.
b The NDA/BLA approval phase was estimated to be 16.0 months on average (2000–2012).
c Costs were capitalized at an 10.5% real discount rate.

phase averaged 18.2 months for the earlier paper’s study period,
that phase averaged 16.0 months for drugs covered by the cur-
rent study.Other things being equal, the observed longer times from
clinical testing to approval yielded higher capitalized costs relative
to out-of-pocket costs. However, the discount rate that we used for
the current study is also lower than for the previous study (10.5%
versus 11.0%). The two effects work in offsetting ways. In addi-
tion, capitalized clinical cost per investigational compound will also
depend on the gaps and overlaps between phases. On net, the ratio
of mean capitalized to out-of-pocket cost per investigational com-
pound was slightly lower for the current study compared to the
previous one (1.5 versus 1.7).20

5.4. Clinical cost per approved new drug

Average cost estimates for investigational drugs are useful, but
we are primarily interested in estimates of cost per approved new
drug. As noted above, our analysis of drugs in development for the
relevant period yielded a predicted overall clinical success rate of
11.83%. Applying this success rate to our estimates of out-of-pocket
and capitalized costs per investigational drug results in estimates
of cost per approved new drug that link the cost of drug failures to
the successes.

Aggregating across phases, we found an out-of-pocket clinical
period cost per approved new drug estimate of $965 million and a
capitalized clinical period cost per approved new drug estimate of
$1460 million. In constant dollars, these costs are 2.6 and 2.4 times
higher than those we found in our previous study, respectively.

5.5. Pre-human out-of-pocket and capitalized costs per approved
drug

The pre-human period, as defined here, includes discovery
research as well as preclinical development. Some costs incurred
during this period cannot be associated with specific compounds.
To deal with this issue, we analyzed reported aggregate annual firm
expenditures on self-originated new drugs by the pre-human and
clinical periods. We  gathered data on aggregate expenditures for
these periods from survey firms for 1990–2010. Both times series
tended to increase over time in real terms. Given this outcome,
and the fact that the clinical expenditures in 1 year will be asso-
ciated with pre-human expenditures that occurred years earlier,
the ratio of total pre-human expenditures to total R&D (pre-human
plus clinical) expenditures over the entire study period would yield
an overestimate of the share of total cost per new drug that is
accounted for by the pre-human period. To accurately estimate

applications under PDUFA were tightened somewhat for some applications after the
initial 5-year period.

20 The differences in the ratios of capitalized to out-of-pocket cost for the individual
phases were also small. For the current study they were 2.0, 1.6, and 1.2 for phase I,
phase II, and phase III, respectively. For the earlier study, we found the ratios to be
2.0,  1.8, and 1.3 for phase I, phase II, and phase III, respectively.

Fig. 2. Pre-human phase, clinical phase, and total out of-pocket and capitalized costs
per approved new compound.

this share we built in a lag structure that associates pre-human
expenditures with clinical expenditures incurred some time later.

The survey firms reported on dates of synthesis or isolation
for compounds for which we  sought cost data, as well as dates
of first human testing. We  had data for the period from synthesis
to first human testing for 78 of the compounds. The average time
from synthesis to initial human testing for these compounds was
31.2 months, down considerably from 52.0 months for the previ-
ous study.21 Our analyses of clinical phase lengths and phase gaps
and overlaps indicated a period of 95.2 months over which clinical
period development costs are incurred. We  approximated the lag
between pre-human and clinical expenditures for a representative
new drug as the time between the midpoints of each period. This
yields a lag of 63.2 months, or approximately 5 years. Thus, we used
a 5-year lag in analyzing the aggregate expenditure data, although
we also examined 4-year and 6-year lags. A 5-year lag applied to
the aggregate expenditure data resulted in a pre-human to total
R&D expenditure ratio of 30.8%, which was only slightly different
from the corresponding ratio used in our previous study (30.0%).
The share was applied to our clinical cost estimates to determine
associated pre-human cost estimates.

Given the estimates of out-of-pocket and capitalized clinical
cost per approved new drug noted in Section 5.4 and the pre-
human expenditure to total R&D expenditure ratio, we  can infer
pre-human out-of-pocket and capitalized costs per approved new
drug of $430 million and $1098 million, respectively (Fig. 2). The
results are very robust to different values for the length of the lag
structure. For example, if we assume a lag of 4 years instead of 5
years, then out-of-pocket pre-human costs would be 6.8% higher.
Alternatively, if we  assume a 6-year lag, then out-of-pocket pre-
human costs would be 8.5% lower.22

21 The results for the current study are consistent with data for a small number of
compounds reported in a recently published study (Stergiopoulas and Getz, 2012).
The mean time from synthesis to human testing there was 37.9 months for 17
compounds.

22 The pre-human to total R&D expenditure ratios for four- and six-year lags were
32.2% and 28.9%, respectively.
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Fig. 3. Trends in capitalized pre-human, clinical and total cost per approved new
drug.

5.6. Total capitalized cost per approved drug

Total cost estimates are the sum of pre-human and clinical
period cost estimates. Our base case total out-of-pocket cost per
approved new drug is $1395 million, while our fully capitalized
total cost estimate is $2558 million (Fig. 2). Time costs (differences
between capitalized cost and out-of-pocket cost) account for 45% of
total cost. This share is down from the share in our previous study
(50%) and that for the study that preceded it (51%). This is due in
part to a shorter pre-human period and a lower discount rate.

5.7. Trends in R&D costs

Fig. 3 presents capitalized pre-human, clinical, and total cost
per approved new drug for the previous three studies in this series
and for our current study. In constant dollars, total capitalized cost
increased 2.31 times for the second study in comparison to the
first, 2.53 times for the third study in comparison to the second
study, and 2.45 times for the current study in comparison to the
third study. However, the samples for these studies include drugs
that entered clinical testing over periods that are not uniformly dis-
tributed. In addition, while the samples were chosen on the basis of
when drugs entered clinical testing, changes over time in the aver-
age length of the development process make ascribing differences
in the study periods according to the year of first human testing
problematic. An alternative is to determine an average approval
date for drugs in each study’s sample and use the differences in
these dates to define the time differences between the studies. Our
previous study described this approach and presented the corre-
sponding annual growth rates between successive studies for the
first three studies.

Drugs in the current study sample obtained FDA marketing
approval from 2005 to 2013. The mean and median approval dates
for drugs in the current study’s sample were both in 2008. For the
previous study, we reported that the average approval date was  in
1997. Thus, we used 11 years as the relevant time span between the
studies and calculated compound annual rates of growth between
the two studies accordingly.

Using the period differences described here and in our previous
study, we determined the compound annual growth rates between
the studies for out-of-pocket and capitalized cost per approved
drug for pre-human, clinical, and total costs (Table 5). Compared
to the growth rate for the results in the previous study, the growth
rates for total out-of-pocket and capitalized costs for the current
study are somewhat higher (9.3% and 8.5% per year). The results
for the current study in comparison to those for the previous study

are also noteworthy in that, after a substantial decline in the growth
rate for real pre-human costs described in the previous study
and presented in Table 5, pre-human costs for the current study
resumed a much higher rate of growth. Conversely, the growth
rates for clinical period expenditures declined from the very high
rates for the previous study, although they are still substantial.

5.8. Cost of post-approval R&D

As we did for our most recent study, we develop indirect esti-
mates of post-approval R&D costs. Post-approval R&D consists of
efforts subsequent to original marketing approval to develop the
active ingredient for new indications and patient populations, new
dosage forms and strengths, and to conduct post-approval (phase
IV) research required by regulatory authorities as a condition of
original approval. We follow the methodology that we  used in
previous study.23 We  utilize our pre-approval estimates together
with aggregate pharmaceutical industry data regarding the drug
development process to construct an estimate of the cost of post-
approval R&D, which together with our pre-approval estimates,
provide estimates of average total R&D cost per new drug cover-
ing the entire development and product life-cycle. The data that
we collected from the survey firms on company annual aggre-
gate expenditures on biopharmaceutical R&D show that over the
study period these firms spent 73.1% of their prescription biophar-
maceutical R&D expenditures on investigational self-originated
new compounds,24 10.2% on investigational compounds that were
licensed-in or otherwise acquired, and 16.5% on improvements to
drugs that have already been approved.25

We  cannot, however, use the percentage of aggregate R&D
expenditures spent on post-approval R&D on a current basis and
apply it to a pre-approval cost estimate to obtain an appropriate
estimate of the cost of post-approval R&D per approved compound.
The reason is that pre-approval costs occur years before post-
approval costs. We  used our aggregate annual firm R&D data to
obtain an appropriate ratio by building in a reasonable lag structure
between pre-approval and post-approval costs.

For our base results we  used, as we  did for the previous study,
a 10-year lag for the aggregate data (which is the approximate
time between median pre-approval development costs and median
post-approval costs, given an 8-year post-approval expenditure
period), we assumed that post-approval R&D cost per approval
is the same, on average, for licensed-in and self-originated com-
pounds, and we  determined the percentage of approvals for the
cost survey firms that are self-originated to estimate the ratio of
post-approval R&D cost per approved compound to pre-approval
cost per approved compound. The data indicated that this share
was 33.4%. Applying this ratio, we estimated the out-of-pocket
cost per approved compound for post-approval R&D to be $466
million (Fig. 4). Since these costs occur after approval and we  are
capitalizing all costs to the point of marketing approval, our dis-
counted cost estimate is lower ($312 million). Thus, out-of-pocket
cost per approved compound for post-approval R&D is 25.0% of

23 We refer to the discussion in DiMasi et al. (2003) and an accompanying Appendix
A  for more detail on the method.

24 This figure includes expenditures on biologics, vaccines, and diagnostics. The
self-originated share for therapeutic investigational drugs and biologics was 71.2%.

25 These expenditure shares are similar to those found for the previous study for
the  1980 to 1999 period. The results here are also similar to figures that the trade
association Pharmaceutical Research and Manufacturers of America (PhRMA) has
published for its member firms for the years 2003 and 2005 to 2010. Those data
do  not separate out expenditures on existing products, but they do distinguish
between self-originated and licensed products. Aggregating across those years, the
shares for self-originated, licensed, and uncategorized were 74.3%, 17.6%, and 8.1%,
respectively.
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Table  5
Compound annual growth rates in out-of-pocket and capitalized inflation-adjusted costs per approved new drug.a

Approval periods Out-of-pocket Capitalized

Pre-human Clinical Total Pre-human Clinical Total

1970s to 1980s 7.8% 6.1% 7.0% 10.6% 7.3% 9.4%
1980s  to 1990s 2.3% 11.8% 7.6% 3.5% 12.2% 7.4%
1990s  to early 2010s 9.6% 9.2% 9.3% 8.8% 8.3% 8.5%

a Costs for 1970s approvals are from Hansen (1979), costs for 1980s approvals are from DiMasi et al. (1991), costs for the 1990s to the early 2000s are from DiMasi et al.
(2003), and costs for the 2000s to early 2010s are from the current study.

Fig. 4. Out-of-pocket and capitalized total cost per approved new drug for new
drugs and for improvements to existing drugs.

total R&D cost (pre- and post-approval), while capitalized cost for
post-approval R&D is 10.9% of total cost.

5.9. Extensions to the base case

We  can extend the base case results on drug development costs
prior to original approval in a number of interesting ways. The
sample dataset includes information on compound-level costs for
both chemical compounds (small molecules) and biologics (large
molecules). As reported in the online supplement (Appendix B),
we examined investigational compounds by molecule size for dif-
ferences in individual clinical phase costs. Since the distributions
of compounds across therapeutic classes differ for large and small
molecules, we conducted a regression analysis of phase costs for
investigational compounds for each of the three clinical phases,
while controlling for molecules size and therapeutic class. Sam-
ple sizes were somewhat limited when cut by both sample size
and therapeutic class, but we found statistically significant higher
phase II costs for large molecules. However, we found that clin-
ical approval success rates for large molecules are substantially
higher than for small molecules. As a result, clinical period cost per
approved compound was appreciably higher for small molecules,
with the ratio of costs nearly the same as we had estimated in a
previous paper for an earlier period (DiMasi and Grabowski, 2007).
Compete results are given and discussed in the online supplement
(Appendix B).

The base case results on full R&D costs link expenditures on drug
failures to the costs of drugs that attain regulatory success. We  can
also estimate the clinical period cost of taking a successful drug all
the way to approval by examining the data for just the approved
drugs in the sample. Focusing on that subsample also allowed us to
examine evidence on the costs for the more therapeutically signifi-
cant drugs (according to what is known at the time of approval) by
using an FDA prioritization system for reviewing drugs submitted
to the agency for marketing approval. We  found that clinical period
costs were substantially higher for the approved compounds in the
sample relative to our results for the sample as a whole, and that
costs were lower (although not at a statistically significant level)

Table 6
Capitalized pre-human, clinical, and total costs per approved new drug (in millions
of 2013 dollars) by discount rate.

Discount rate Pre-human Clinical Total

1.0% 472 1012 1476
2.0%  517 1044 1561
3.0% 567 1086 1653
4.0%  621 1129 1750
5.0%  679 1175 1854
6.0%  742 1222 1964
7.0%  811 1271 2082
8.0%  885 1322 2207
9.0%  965 1376 2341

10.0% 1052 1431 2483
11.0%  1145 1489 2634
12.0%  1246 1549 2795
13.0%  1355 1612 2967
14.0%  1473 1677 3150
15.0% 1600 1744 3344

for compounds that the FDA had designated for a priority review
(compounds thought to represent a significant gain over existing
therapy). These results are presented in full and discussed in the
online supplement (Appendix B).

6. Sensitivity analysis

We examined how sensitive the results were to extreme values
in the data and to changes in certain critical parameters. In particu-
lar, we focus in detail in this section on variation in the discount rate
used to calculate capitalized costs. We  also determine the extent to
which key cost drivers (cash outlays, risks, time, and the cost of
capital) explain the increase in total cost per approved drug found
for this study relative to our previous study.

In addition, since all of the parameters are subject to sampling
error, we conducted Monte Carlo simulations, reported on in detail
in the online supplement (Appendix C), allowing all parameters to
vary according to their sampling distributions (using Crystal BallTM

software). For the full capitalized pre-approval cost estimate, 80%
of the simulation forecasts (set of 1000) varied between $2.3 billion
and $2.8 billion. All of the forecasts varied between $1.9 billion and
$3.2 billion.

Finally, we also conducted an outlier analysis to determine the
impact of the most extreme values in the dataset. The results show
that drugs with high and low costs have a fairly small impact on cost
estimates. For example, if all cost data for the drugs with the highest
and lowest aggregate clinical costs are dropped from the analysis,
then the full capitalized cost estimate falls by only 3.0% (3.5% if only
the drug with the highest aggregate cost is dropped). The online
supplement (Appendix D) further describes in detail various outlier
analyses, including those that examine results when a number of
high and/or low values for each clinical phase are excluded even
though no one drug has uniformly high or low values across all
clinical phases.



28 J.A. DiMasi et al. / Journal of Health Economics 47 (2016) 20–33

6.1. Effects of variation in the discount rate

Table 6 shows how pre-human, clinical, and total capitalized
costs would vary by discount rate at one percentage point inter-
vals. The values for a zero percent discount rate are out-of-pocket
costs. In the neighborhood of our base case discount rate (10.5%),
clinical cost changed by approximately $30 million, pre-human cost
changed by approximately $45 million, and total cost changed by
approximately $75 million for every half of one percent shift in the
discount rate. In our previous study, the base case discount rate
was 11.0%. At an 11.0% discount rate, total capitalized cost here
was $2634 million or 3% higher than our base case result. At more
extreme values for the discount rate, Table 6 indicates that total
capitalized cost with a 15% discount rate was $3334 million, or 30%
higher than our base case result. Similarly, a 3% discount rate (a fig-
ure often used as a social discount rate) yielded a total capitalized
cost per approved new drug of $1561 million, or 39% lower than
the base case result.26

6.2. Impact of cost drivers

As noted in the previous section, the full cost estimate is a func-
tion of numerous parameters that interact in a non-linear (often
multiplicative) manner. That makes it difficult to isolate the extent
to which changes in individual parameters alone drive changes in
total costs. However, we can get a sense for which parameters had
the greatest impacts, in either direction, on the change in total R&D
cost between the previous study and the current one by calculat-
ing what R&D costs would have been if only a single parameter
(or a set of related parameters) had changed from what it was for
the previous study to what we found it to be for the current study
period.

Table 7 shows our results for these thought experiments for
the major parameters categorized into four groupings (direct pre-
human and clinical average phase cash outlays, technical risks,
average development and approval times, and the cost of capital).
The base result is total cost per approved new compound for the
DiMasi et al. (2003) study in year 2013 dollars ($1044 million). The
current study full cost estimate is 145% higher than the base result.
That change reflects the cumulative effect of all parameter changes.
For the table, we examined parameter-by-parameter changes from
the parameter values for the DiMasi et al. (2003) study to those
values found for the current study.

The largest impact on the change in costs between the stud-
ies was driven by changes in average out-of-pocket clinical phase
costs, which resulted in an 82.5% increase in full cost.27 Considering
also the small difference between the studies in the estimated ratio
of pre-human to clinical costs, the impact of the change in direct
out-of-pocket phase costs was an increase in total cost of 85.5%. The
increase in total cost was also driven to a substantial extent by much
higher development risks. The overall clinical approval success rate
declined from approximately one-in-five to approximately one-in-
eight. That change alone accounts for a 57.3% increase in total cost.
However, the impact of a lower clinical approval success rate was
mitigated to a small extent by a shift in the distribution of failures
to earlier in development. Taking both effects into account resulted

26 The appropriate social rate of discount for government backed expenditures has
been analyzed and debated extensively in the economics literature. See for example,
Moore et al., 2013 and Burgess and Zerbe, 2013. A standard reference in the cost-
effectiveness literature (Gold et al., 1996) recommends 3% as the base case rate in
comparing alternative medical therapies (“Therefore, we  recommend that the base
rate of 3% and an alternate rate of 5% be retained for a period of at least 10 years.”,
p.233).

27 Given the methodology, higher out-of-pocket clinical phase costs also get asso-
ciated with higher out-of-pocket pre-human phase costs.

Table 7
Impact on total capitalized cost per approved new drug due to changes in individual
cost  drivers (current study factor effect relative to prior studya cost).

Factor category Factor (change to current
study values)

Capitalized
cost (millions
of 2013 $)

Percentage
change in cost

Direct cash outlays
Out-of-pocket clinical
phase costs

1905 82.5%

Pre-human/clinical cost
ratio

1061 1.6%

Overall out-of-pocket costs 1937 85.5%
Risk

Clinical approval success
rate with prior study
distribution of failures

1643 57.3%

Distribution of failures
with prior study clinical
approval success rate

981 −6.0%

Overall risk profile: clinical
approval success rate plus
distribution of failures

1538 47.3%

Time
Pre-human phase 993 −4.9%
Clinical phase 1046 0.2%
Regulatory review 1013 −3.0%
Overall development
timeline

985 −5.6%

Cost  of capital
Discount rate 1012 −3.1%

a DiMasi et al. (2003). In 2013 dollars the capitalized cost per approved new drug
for the prior study is $1044 million.

in an increase in total cost of 47.3%. Changes in the development
and approval timeline had a relatively small depressing effect on
total cost. This impact was  driven by a shorter pre-human testing
phase and a shorter average approval phase. Average clinical devel-
opment time increased modestly, and this had a relatively small
impact on total cost. Overall, the effect of changes in the devel-
opment and approval timeline was  a 5.6% decrease in total cost.
Finally, the small change in the cost of capital had a 3.1% depress-
ing effect on total cost. The aggregation of the direct impacts across
the four cost factor groupings accounted for a 124% increase in costs
between the two  studies. We  attribute the residual increase (21%)
to interaction effects.

7. Critiques, sample representativeness, and validation

Our prior study results have been questioned on a number of
methodological and data grounds (Angell, 2005; Goozner, 2004;
Light and Warburton, 2005a,b; Love, 2003; Young and Surrusco,
2001). We  have rebutted each of these criticisms in detail in a num-
ber of venues (e.g., DiMasi et al., 2004, 2005a,b). We  review the
critics’ main arguments only briefly here.

Goozner (2004) and Angell (2005) reject opportunity cost
calculations because they, in essence, deny that industrial phar-
maceutical R&D expenditures can be viewed as investments at
risk.28 These points are addressed more fully in DiMasi et al. (2004).
Clearly, industrial pharmaceutical R&D meets the criteria for being
considered investments that have opportunity costs. In any event,
an estimate with no opportunity costs is simply the out-of-pocket
cost estimate.

28 In the case of Goozner (2004), the claim is made that R&D expenditures are
expenses rather than investments, because accountants have traditionally treated
them as such for tax purposes (failing to recognize practical measurement problems
underlying why this has been the practice, such as great uncertainty regarding future
regulatory and commercial success). The basis offered for rejecting opportunity costs
in  Angell (2005, p.45) is simply the claim that pharmaceutical firms “have no choice
but  to spend money on R&D if they wish to be in the pharmaceutical business”.
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A number of the critiques question how representative the data
were for prior studies, whether tax deductions and credits must be
included, and whether any FDA application for product marketing
approval (as opposed to the active ingredient that is at the core of
all such applications) should be taken as the unit of observation.
As noted, we have addressed all of these issues in earlier publica-
tions as they relate to our prior studies. In this section we examine
the representativeness of the survey firms and data used for this
study, what the level of tax credits has been in relation to R&D
expenditures in recent years, an analysis of molecules that have
been approved for orphan drug indications recently, and we out-
line a variety of methods using independent data that can be used
to validate our results (full details of the methods and analysis can
be found in our online supplement).

7.1. Representativeness of the survey firm data

Questions about data representativeness should be framed in
terms of the population from which the sample was selected. In
particular, it is relevant to compare characteristics of the investiga-
tional drugs in our cost survey sample and for our cost survey firms
generally to those of all drugs in our database of top 50 pharma-
ceutical firms, which is the relevant population.29 This is the main
focus of the analysis in this section.

Smaller research-oriented firms may  have a comparative advan-
tage in the discovery and pre-human stages because they often have
scientific researchers with close ties to the basic research underly-
ing new classes of therapies and technology platforms. Even if this
is the case, the literature indicates that smaller firms also tend to
have significantly higher costs of capital, especially when they are
start-ups financed by venture firms. The literature also indicates
that firms with larger R&D pipelines and greater R&D experience
have a higher probability of success during the costly clinical stages
of drug R&D. It is not evident, therefore, that the R&D costs for com-
pounds originating in smaller firms, whether developed internally
or in alliances would be systematically lower than those originating
in mid-sized and large firms. We  discuss what is known about R&D
metrics for small firms in Appendix E of the online supplement.

As noted, the appropriate comparator dataset for our cost survey
sample is the population of investigational compounds of the top
50 pharmaceutical firms over the relevant period. There are 1442
compounds in the top 50 firm database that met  our study inclusion
criteria. Of these, 510, or 35.4% belonged to nine of our 10 cost
survey firms.30 Thus, the cost survey sample (n = 106) constitutes
20.8% of the survey firm compounds and 7.4% of the population
compounds.

We  determined the therapeutic class distribution for the drugs
in the larger dataset for the four largest therapeutic classes and one
miscellaneous class (with a wide variety of drug types) for drugs in
the dataset that met  our study inclusion criteria and compared it
to the therapeutic class distribution for our cost sample. The pop-
ulation shares for antineoplastic, cardiovascular, central nervous
system (CNS), and systemic anti-infective drugs were 21.5%, 8.7%,
19.0%, and 8.5%, respectively. The corresponding shares for the cost
survey sample were 19.8%, 9.4%, 24.5%, and 8.5%, respectively. We
used a chi-squared goodness-of-fit test to compare the therapeutic
class distributions for cost survey firm drugs and for the drugs of

29 The data included in the top 50 firm dataset were curated primarily from
information contained in two commercial investigational drug pipeline databases
that are available after payment of subscription fees. Additional information was
obtained from freely available web sites. See Section 4 above for a description of
data sources.

30 One of the participating firms was outside of the top 50.

the entire set of 50 firms in the database, and found no statistically
significant differences in the class shares (!2 = 2.4257, df = 4).

We also examined the degree to which the top 50 firms in aggre-
gate and the sample of cost survey firms agreed in terms of how
molecule type (biologic versus small molecule) and the sourcing
of compounds are distributed. For the set of top 50 firms, 14.6%
of their self-originated investigational compounds over the study
period are large molecules, compared to 13.7% for the survey firms
(p = 0.3933). In terms of the share of investigational compounds for
the study period that are self-originated (as broadly defined here),
we found the share to be 74.1% for the cost survey firms and 71.1%
for all top 50 firms (p = 0.1039).

Finally, we also examined the phase transition and overall
approval success rates for the cost survey firms and compared them
to the corresponding estimates for the larger dataset. The phase
transition rates for just the cost survey firms were 58.0% for phase I
to phase II, 36.0% for phase II to phase III, 58.2% for phase III to reg-
ulatory review, and 89.5% for regulatory review to approval. The
corresponding figures for the population, as shown in Fig. 1, are
59.5%, 35.5%, 62.0%, and 90.4%. The overall clinical approval success
rate for just the cost survey firms implied by the phase transition
rates is 10.9%, which compares to 11.8% for the entire dataset.

7.2. Orphan drug development

Some past critiques have focused to some extent on orphan tax
credits, which can provide incentives to develop some drugs for
a class of indications. We  examine the extent to which these tax
credits and other tax issues are empirically significant in the context
of drug development as a whole in the next section. Here we  briefly
discuss the nature of development of molecules that are approved
for orphan indications and the distinction between costs for orphan
drug indications and the full development costs for molecules with
orphan drug indication approvals.

Compounds developed for orphan indications may  well have
lower clinical development costs for those indications, as trial sizes
tend to be lower.31 The share of U.S. original new drug approvals
from 2000 to 2014 for drugs with an orphan indication was 27%, and
has increased in relative terms over the last 3 years of that period.32

The most recent approval experience aside, the share of approvals
sponsored by the set of population firms (top 50) matches closely
the historical average for all approvals from 1987 to 2010 (22% for
top 50 firms versus 23% of all approvals).33 The survey firms were
nearly indistinguishable from the population non-survey firms by
this metric (21% versus 23%).

31 Drugs for these indications, with some notable exceptions, tend to garner lower
sales given limited patient populations. This contention is supported by recent data
analysis conducted by IMS  Health (Divino et al., 2014). They found that sales in the
United States for orphan indications varied from only 4.8% to 8.9% of total pharma-
ceutical sales over 2007–2013. The analysts also projected that growth in orphan
drug expenditures would slow over 2014–2018.

32 The result was  calculated from information provided by the FDA on its web-
site and included in a Tufts CSDD database of NME and therapeutically significant
biologic approvals. The share of new drug approvals with orphan indications has
increased very recently. The Orphan Drug Act was enacted in 1983, but it took sev-
eral years for an appreciable number of such approvals to appear. From 1987 to 1999
the orphan drug share of all new drug approvals was  23%; the same share as for the
2000–2010 period. The orphan drug share was, however, unusually high for 2014
(41%), and above-average for 2011–2013 (approximately one-third of approvals).

33 An FDA analysis of Center for Drug Evaluation and Research (CDER) marketing
applications for NMEs and new biologics for 2006 to 2010 found that approximately
one-third of the applications were sponsored by small firms, and that 75% of the
applications for first-in-disease therapies for orphan indications came from small
firms (Lesko, 2011). Such firms may  find a low R&D cost orphan disease oriented
strategy attractive, given that typical sales and operating profit levels may still be
sufficient to increase their market valuations.
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Table 8
Number of indications tested clinically prior to initial U.S. regulatory marketing
approval for therapeutic compounds approveda in 2014 by orphan drug status.

Mean Median Range % multiple
indications

Orphan (n = 17) 8.5 7.0 1–4 88%
Orphan cancer (n = 9) 10.9 9.0 1–24 89%
Non-orphan (n = 22) 2.7 2.0 1–7 73%
All  approvals (n = 39) 5.3 3.0 1–24 79%

a Therapeutic new molecular entities (NMEs) and new biologic entities (NBEs)
approved by the Center for Drug Evaluation and Research (CDER) of the United
States Food and Drug Administration (FDA).

The cost survey sample contained two compounds that were
approved originally for orphan indications.34 The average clinical
period cost for these two compounds was nearly the same as the
average for all sample approved compounds (94% of the overall
average). One of the compounds, though, was relatively low cost,
while the other was relatively high cost. This may  reflect the expe-
rience of molecules approved for orphan indications generally, as
total molecule cost depends not only on the approved indication,
but, critically, on the total number of indications (orphan and non-
orphan) pursued.

To investigate this point further, we examined the development
histories of all new therapeutic drugs and biologics approved in the
United States in 2014. We  studied the records for these compounds
in two commercial pipeline database (IMS  R&D Focus and Cortel-
lis), as well as the clinicaltrials.gov website. Table 8 demonstrates
that, even with a conservative notion of what constitutes differ-
ent indications,35 molecules approved for orphan indications were
investigated in a substantial number of indications prior to origi-
nal marketing approval. This was particularly true for compounds
approved for treating orphan cancer indications, and, in general, the
orphan drugs tended to be investigated in many more indications
prior to approval than was the case for non-orphan compounds.

7.3. Taxes and R&D expenditures

As in our previous studies, the cost estimates presented here
are pre-tax. Our objective was to measure the level of and trends
in the private sector real resource costs of developing new drugs
and biologics. As discussed in DiMasi et al. (2003), if one is calculat-
ing after-tax rates of return for R&D one would need to include the
effect of taxes. Under current U.S. corporate income tax account-
ing practices, firms are able to deduct R&D expenses at the time
they incur the costs. This is in contrast to many other invest-
ments, such as plants and equipment, which must be amortized
and depreciated over a longer time period. This treatment reflects
the difficulty of appropriately depreciating an intangible asset such
as R&D. Later, when the company earns profits from the sales of
approved pharmaceuticals it cannot depreciate the R&D invest-
ment for income tax purposes. The advantage for R&D investment
over investment in plant and equipment is the timing of tax pay-
ments on net income. If one were calculating the rate of return

34 Analyzing orphan drug status for investigational compounds is problematic
because the designation may  be granted at any point during the development pro-
cess. Thus, some compounds that might have been granted orphan drug status can
be abandoned before that would occur.

35 Indications may  be defined quite narrowly. We  chose a broad definition that
would limit the number of different indications pursued. Specifically, we  considered
all trials for the same disease and that applied to the same organ system as testing
on  the same indication. For example, oncology compounds may  be tested as first-
line treatment, second-line treatment, for refractory patients, as a monotherapy, in
combination with other compounds, or for special patient populations. These cases
were considered to be the same indication if they applied to the same organ (e.g.,
breast cancer or prostate cancer).

on R&D investments one would need to take into account the tax
implications. Making these adjustments is complicated by the fact
that major firms operate in multiple tax jurisdictions.

In DiMasi et al. (2003) we also discussed several tax credits
available in the United States to firms in the biopharmaceutical
industry. In particular, we examined the Research & Experimenta-
tion tax credit for increasing qualified research expenditures, which
we concluded had little impact on large multinational pharma-
ceutical firms.36 Since then, the Qualifying Therapeutic Discovery
Project tax credit was  created as part of the Patient Protection and
Affordable Care Act of 2010 (http://grants.nih.gov/grants/funding/
QTDP PIM/; accessed 14.08.14). However, it is quite restrictive
in that it applies to discovery projects for small firms with a
limit of $5 million per taxpayer. Recently, the U.S. Congress Joint
Committee on Taxation (2013) estimated tax expenditures for fis-
cal years 2012–2017 for the credit for increasing research activities,
the Qualifying Therapeutic Discovery Project tax credit, and the
advantage from expensing, as opposed to amortizing, research and
experimental expenditures to be, in aggregate, in the range of $10
billion to $12 billion per year for fiscal years 2012–2017 across all
U.S. corporations engaged in research activities. It is not clear how
much of this is accounted for by the biopharmaceutical industry.

We also examined in DiMasi et al. (2003) the impact of tax cred-
its for orphan drug research, and found them to be quite small in
relation to total R&D expenditures for large pharmaceutical firms.
The reporting requirements for orphan drug credits are such that
many companies do not take the credit. The major financial incen-
tive of the orphan drug program appears to be the intellectual
property protection that is created from the granting of 7 years
of marketing exclusivity. With respect to the magnitude of orphan
drug tax credits utilized in the United States, the U.S. Congress Joint
Committee on Taxation (2013) estimated that expected tax credits
for orphan drug research are fairly small at between $700 million
and $1 billion per year from fiscal years 2012–2017.

To put these tax credits and tax advantages in perspec-
tive, Battelle and R&D Magazine’s 2014 Global R&D Fund-
ing Forecast (http://www.battelle.org/docs/tpp/2014 global rd
funding forecast.pdf?sfvrsn=4; accessed 14.08.14) estimates that
approximately $79 billion will be spent in the United States on
R&D by the biopharmaceutical industry.37 Some other countries
also have a number of tax credit incentives in place for R&D. How-
ever, it seems unlikely that, in aggregate, their value in relation to
R&D expenditures for the biopharmaceutical industry is dispropor-
tionately higher than is the case for the United States. The Battelle
and R&D Magazine’s prediction of global R&D spending by the bio-
pharmaceutical industry is approximately $171 billion. In sum, in
aggregate the value of R&D tax credits and the tax advantage of
expensing versus amortizing R&D expenditures for the biophar-
maceutical industry appear to be no more than one-sixth of total
industry R&D expenditures (and perhaps significantly less than
that).

7.4. Validation

We  gathered publicly available data and performed a number
of independent analyses on those data to corroborate our results.
Details on methodology and data are provided in Appendix F of our
online supplement. The validation efforts can be grouped into those

36 The impact may  be greater for small firms if their R&D expenditures are growing
more rapidly.

37 The report estimates that the industrial life sciences sector will spend $92.6
billion on R&D in the United States in 2014. However, the report also indicates that
approximately 85% of all life sciences industrial expenditures are accounted for by
the biopharmaceutical industry.
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that utilize micro data on elements of the development process that
are then used to develop growth rate estimates for portions of the
process, and those that use publicly available aggregate financial
time series data and compound approval statistics for biopharma-
ceutical firms as a check on our estimate of overall cost.

On a micro level, we examined survey data from the National
Science Foundation (NSF), published estimates of trends in clinical
trial complexity and clinical trial costs per subject, and published
trade association times series data on R&D employment levels. Uti-
lizing external data on costs per subject, along with clinical trial
sizes and estimated clinical approval success rates from our anal-
yses over time, we found a compound annual growth rate in real
clinical trial costs between the study periods for our previous study
and the current study of 9.9%, which is close to our clinical period
cost growth rate of 9.2% for out-of-pocket costs shown in Table 5.
We also examined measures of clinical trial complexity (number of
procedures per trial) in the published literature (Getz et al., 2008;
PAREXEL, 2005) and found a compound annual growth rate of 10.0%
over our study period. Finally, we utilized trade association and 10-
K information on R&D scientific and professional staff employment
levels and NSF data on salary levels to estimate that labor costs
increased at a rate of 8–9% per year across our study periods.

We  examined PhRMA time series data on the R&D expenditures
of its member firms. The reported growth rate for cost survey firms
was 4.9%, compared to 4.2% for the PhRMA time series data for
the portion of the survey period that could be compared.38 We
also used the industry time series data, as we  had in the pre-
vious study, in two ways to get a sense for the magnitude of
overall costs per approved new molecule. In one approach, we  esti-
mated the portion of the reported time series expenditure levels
that could be attributed to self-originated compound development.
Next we determined the annual number of approvals of PhRMA-
member firms that were self-originated. Finally, we  used our study
estimated time-expenditure profile to link aggregate R&D expendi-
tures to approvals. For reasons expounded upon in the supplement,
this will likely yield an upper bound estimate. Using this approach
we found our out-of-pocket cost per approved molecule estimate to
be 56% of the estimate derived from aggregate published industry
data. The second approach focuses on the published industry self-
originated R&D expenditure level for a single year, assumes that
every self-originated member-firm approval (inclusive of failures)
costs what we found to be our average out out-of-pocket cost esti-
mate, and uses our estimated time-expenditure profile to spread
costs out over time to explain reported total R&D expenditures for
the year considered. As with the previous method, the outcome
would be problematic if using our average out-of-pocket cost esti-
mate explained more than the reported aggregate R&D expenditure
level. We found that this approach explained 57% of the reported
expenditures.

Company total biopharmaceutical R&D expenditures reported
for the cost survey are consistent with the audited financial state-
ments of the firms in that the annual values are equal to or lower
than company R&D expenses found in the financial statements.39

As another check on our overall results, we examined what sur-
vey company total biopharmaceutical R&D expenditures would be
given our estimate of out-of-pocket cost per approved molecule
and assuming that entry rates to survey company pipelines are in
a steady state. That figure can then be compared to R&D expen-
diture levels reported for these firms for our cost survey (which,
as noted, match audited financial statements). Full details of these

38 As explained in the Supplement, the growth rate for the PhRMA time series may
somewhat underestimate the true growth rate.

39 Biopharmaceutical R&D expenditures may  be less than total company R&D
expenditures if the firm engages in non-biopharmaceutical R&D.

calculations are in Appendix F of the supplement. Depending on
assumptions, we found that we  could account for between 51% and
94% of the reported total annual biopharmaceutical R&D expendi-
tures in this way. Thus, all three approaches using aggregate R&D
expenditure data suggest that our estimate of out-of-pocket cost
per approved molecule is, if anything, conservative.

8. Conclusions

Studies of the cost of developing new drugs have long been
of substantial interest to drug developers, drug regulators, policy
makers, and scholars interested in the structure and productivity of
the pharmaceutical industry and its contributions to social welfare.
The interest has been strong and growing over the last few decades
during which cost containment pressures for drugs approved for
marketing have expanded and concerns have been raised about
industry productivity in an environment in which industry struc-
ture has been evolving (Munos, 2009; Pammolli et al., 2011). The
changing industrial landscape has featured consolidation among
large firms, growing alliances among firms of all sizes, and the
growth of a small firm sector.

We  have conducted the fourth in a series of comprehensive
compound-based analyses of the costs of new drug development.
In the last study we reported average out-of-pocket and capitalized
R&D costs of $403 million and $802 million in 2000 dollars ($524
million and $1044 million in 2013 dollars), respectively. For our
updated analysis, we estimated total out-of-pocket and capitalized
R&D cost per new drug to be $1395 million and $2558 million in
2013 dollars, respectively. To examine R&D costs over the entire
product and development lifecycle, we  also estimated R&D costs
incurred after initial approval. This increased out-of-pocket cost
per approved drug to $1861 million and capitalized cost to $2870
million. We validated our results in a variety of ways through analy-
ses of independently derived published data on the pharmaceutical
industry.

Our pre-approval out-of-pocket cost estimate is a 166% increase
in real dollars over what we found in our previous study, and
our capitalized cost estimate is 145% higher. Roughly speaking,
the current study covers R&D costs that yielded approvals, for
the most part, during the 2000s and early 2010s. Our  previous
study (DiMasi et al., 2003) generally involved R&D that resulted
in 1990s approvals. The compound annual rates of growth in total
real out-of-pocket and capitalized costs between the studies are
9.3% and 8.5%, respectively. These growth rates are both somewhat
higher than those we found for the two previous studies (7.6% and
7.4%, respectively). Growth in out-of-pocket clinical period costs
have moderated some from the 1990s, but the growth rate is still
high at 9.2%. While the compound annual growth rate for out-
of-pocket pre-human costs declined substantially for the previous
study (from 7.8% to 2.3%), this study showed a substantially higher
growth rate for pre-human costs in the new century (9.6%).

The success rate found for this study is nearly 10 percentage
points lower than for the previous study. The overall change in
the risk profile for new drug development by itself still accounted
directly for a 47% increase in costs. It is difficult to know defini-
tively why  failure rates have increased, but a number of hypotheses
worthy of testing come to mind. One possibility is that regulators
have become more risk averse over time, especially in the wake of
high profile safety failures for drugs that have reached the market-
place (most notably, VioxxTM, but there have been others as well).
It may  also be the case that the industry has generally focused more
in areas where the science is difficult and failure risks are high as
a result (Pammolli et al., 2011). Finally, the substantial growth in
identified drug targets, many of which may  be poorly validated,
may  have encouraged firms to pursue clinical development of more
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compounds with an unclear likelihood of success than they other-
wise would.

As can be seen from results cited in the supplement developed
external to this study, as well as our own data, out-of-pocket clin-
ical cost increases can be driven by a number of factors, including
increasing clinical trial complexity (Getz et al., 2008), larger clinical
trial sizes, inflation in the cost of inputs taken from the medical sec-
tor that are used for development, and possibly changes in protocol
design to include efforts to gather health technology assessment
information and, relatedly, testing on comparator drugs to accom-
modate payer demands for comparative effectiveness data. The
expansion of the scope of the clinical trial enterprise during our
study period is illustrated by the finding in Getz and Kaitin (2015)
that for a typical phase III trial information had been gathered by
sponsors on nearly 500,000 data points in 2002, but more than
900,000 data points in 2012.

Finally, it is difficult to assess whether and how regulatory bur-
dens may  have impacted changes in industry R&D costs over time.
However, occasionally, an exogenous shift in the types and amount
of information perceived as necessary for regulatory approval for
particular classes of drugs can be instructive. For example, dur-
ing our study period the FDA issued guidance (Food and Drug
Administration, 2008) for the development of drugs to treat dia-
betes in late 2008 that highlighted a need to better assess and
characterize cardiovascular risks for this class of compounds, after a
number of cardiovascular concerns emerged regarding a previously
approved drug (Avandia®). A number of development metrics posi-
tively related to R&D costs can be examined pre- and post-guidance.
DiMasi (2015), for example, found that average U.S. clinical devel-
opment times increased from 4.7 to 6.7 years for diabetes drugs
approved in the United States from 2000–2008 to 2009–2014,
respectively. In addition, Viereck and Boudes (2011) found that the
number of randomized patients and patient-years in NDAs for dia-
betes drugs approved from 2005 to 2010 increased more than 2.5
and 4.0 times, respectively, before and after the guidelines were
issued. Our sample data show that diabetes drugs were among the
most costly (particularly for phase III [92% higher than the overall
average]).

Our analysis of cost drivers indicates that the rate of increase
observed in the current study was driven mainly by increases in the
real out-of-pocket costs of development for individual drugs and by
much higher failure rates for drugs that are tested in human sub-
jects, but not particularly by changes in development times or the
cost-of-capital. Continued analysis of the productivity of biophar-
maceutical R&D should remain an important research objective.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jhealeco.2016.01.
012.
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SCORE	ONE	FOR	the	quantified	self-surveillance	movement.	Last	week,	the	US
Food	and	Drug	Agency	approved	the	first-ever,	over-the-counter	digital
contraceptive—a	polished	and	almost	preternaturally	upbeat	mobile	app
called	Natural	Cycles.	Basal	body	temperature	readings	and	monthly
menstruation	data	feed	into	an	algorithm	that	tells	users	whether	or	not	they
should	be	having	unprotected	sex.	Like	most	forms	of	birth	control,	it’s	not
foolproof;	the	app	has	been	dogged	by	reports	of	unwanted	pregnancies	that
prompted	two	ongoing	investigations	by	European	authorities	into	its
Swedish	maker’s	marketing	claims.

But	that	hasn’t	hurt	Natural	Cycles’	popularity.

The	app,	which	is	available	without	a	prescription,	boasts	more	than	900,000
users,	or	“Cyclers”	worldwide,	according	to	the	company.	And	with	its	new
FDA	approval—clearing	the	way	for	similar	fertility	and	period-tracking	apps
—the	company	is	expanding	operations	with	a	new	US	office	in	New	York.	It
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also	recently	added	a	research	team	based	in	Geneva,	made	up	mostly	of
scientists	hired	away	from	CERN.	(Natural	Cycles’	husband	and	wife	co-
founders	Elina	Berglund	and	Raoul	Scherwitzl	began	work	on	the	app	while
she	was	employed	as	a	physicist	at	the	Swiss	particle-smashing	facility	and
he	was	pursuing	research	at	the	University	of	Geneva.)	The	new	team	will
search	a	growing	collection	of	user	information	for	insights,	beyond
contraception	and	planning	a	pregnancy,	says	Berglund.	It’s	not	exactly	the
Higgs	boson,	but	it	could	turn	out	to	be	more	lucrative.

Women’s	health	apps	are	big	business,	you	see.	Users	pay	Natural	Cycles	a	$10
monthly	or	$80	annual	subscription	fee,	which	includes	an	oral	thermometer.
But	all	that	industrious	tracking	of	periods,	and	sex,	and	basal	body
temperature—Natural	Cycles	takes	one	to	three	cycles	to	“get	to	know	you”—
is	also	valuable	as	a	database.	Even	in	its	anonymized,	aggregated	form,
pharmaceutical	firms,	the	insurance	industry,	and	marketing	agencies	are
interested.

Natural	Cycles’	privacy	policy	states	that	in	using	the	app	each	user	grants
the	company	and	any	of	its	partners	broad	rights	to	“use,	reproduce,
distribute,	modify,	adapt,	prepare	derivative	works	of,	publicly	display,
publicly	perform,	communicate	to	the	public,	and	otherwise	utilize	and
exploit	a	user's	anonymized	information.”

It’s	not	that	different	from	the	privacy	policies	of	other	consumer	apps,	says
Christine	Bannan,	consumer	privacy	counsel	for	the	Electronic	Privacy
Information	Center.	Other	popular	cycle-tracking	apps	like	Clue	and	Glow
also	reserve	the	right	to	share	pooled,	anonymized	data	with	third	parties.
“These	policies	are	just	used	by	companies	as	disclaimers	to	reserve	future
things	they	might	want	to	do,”	she	says.	But	the	sensitivity	of	fertility
information	makes	that	potentially	more	concerning,	than	say	social	media
data,	says	Bannan.	“I	think	that	it’s	important	for	potential	users	to	be	aware
that	they	don’t	necessarily	have	the	rights	they	would	for	health	data	like
traditional	medical	records,	under	HIPAA.”

Berglund	says	Natural	Cycles’	only	revenue	stream	at	the	moment	is	the	app’s
subscription	service,	and	that	selling	customer	data	to	third	parties	isn’t	part
of	the	company’s	business	plan.	“We’ve	never	shared	any	data	for	financial
purposes,”	she	says.	But	that	may	not	always	be	the	case.	“I	can’t	say	we’ll
never	share	data,	there’s	no	guarantees	in	life	of	what	will	happen.”
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The	company	already	shares	some	anonymized	and	aggregated	data	with
regulators	like	the	FDA,	and	with	academic	research	partners	in	Sweden,	the
UK,	and	the	US,	according	to	Berglund.	She	says	they	have	to	seek	approval
from	an	ethical	review	board	for	each	research	project,	to	evaluate	whether
or	not	the	blanket	consent	users	sign	to	use	the	service	can	be	applied	to	any
additional	studies.

Natural	Cycles	stores	user	data	in	an	encrypted	cloud	environment,	and	every
week	a	pooled,	anonymized	version	of	the	data	gets	pulled	onto	the
company’s	local	servers	to	run	the	analysis	that	powers	its	app.	So	if	you
decide	you	want	to	delete	your	data,	it	should	get	scrubbed	from	the	cloud
first,	and	then	from	the	company’s	models,	during	that	weekly	overwriting
process,	according	to	Berglund.	But	according	to	the	company’s	privacy
policies,	it’s	under	no	obligation	to	delete	any	data	it	has	already	distributed
elsewhere.

“Having	self-knowledge	is	not	inherently	a	bad	thing,”	says	Karen	Levy,	a
sociologist	and	lawyer	at	Cornell	University	who	studies	the	social,	legal,	and
ethical	dimensions	of	emerging	technologies.	While	fertility	apps	can	have
real	upsides,	she	encourages	people	to	be	aware	that	any	data	they	collect
about	themselves—from	their	history	of	prescription	contraceptives	to	how
often	they	have	sex—can	go	on	to	have	another	life	of	its	own.	“Before	you
sign	up	for	an	app	like	this	you	have	to	ask	yourself	if	you	if	this	information
is	something	you	want	to	exist	forever,	to	someday	be	combined	with	other
data	about	you	for	research	or	marketing,	because	those	possibilities	are
definitely	in	the	game.”

In	the	DNA	testing	industry,	some	customers	were	surprised	last	month	when
23andMe	announced	a	partnership	with	pharmaceutical	giant
GlaxoSmithKline	to	mine	its	customer	database	for	potential	new	drug
targets.	Natural	Cycles	is	also	pursuing	a	pharmaceutical	partnership,	with
Merck,	but	under	very	different	terms.

The	two	companies	are	collaborating	on	an	early	stage	pilot	in	Sweden	to
investigate	whether	Natural	Cycles’	data	can	predict	early	signs	of	infertility.
One	big	clue	comes	from	the	follicular	phase—the	time	interval	between
menstruation	and	ovulation.	Natural	Cycles’	scientists	have	picked	up	some
signals	that	suggest	a	shorter	follicular	phase	correlates	with	lower	fertility.
They’ve	also	noticed	that	users	who	who	are	coming	off	of	hormonal	birth

GIVE	A	GIFT



control	aren’t	any	less	fertile	overall,	but	they	do	tend	to	experience	a	delay
in	getting	pregnant.	Berglund	says	there’s	no	commercial	deal	yet,	though,
and	no	data	has	traded	hands.	But	the	idea	of	the	pilot	is	to	help	the	right
women	seek	help	at	fertility	clinics,	as	early	as	the	data	will	allow.	Merck	is	a
major	world	supplier	of	fertility	treatment	drugs.
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Interview

The doctor, geneticist and author talks about his new
book on the future of our relationship with medicine

Sun 7 Jul 2019 11.00 BST

Eric Topol: ‘How can we have better bonding, accuracy and precision in our care?’

Photograph: Zuma Press Inc/Alamy

Eric Topol is an American cardiologist and geneticist – among his many roles he is founder
and director of the Scripps Research Translational Institute in California. He has previously
published two books on the potential for big data and tech to transform medicine, with his
third, Deep Medicine, looking at the role that artificial intelligence might play. He has served
on the advisory boards of many healthcare companies, and last year published a report into
how the NHS needs to change if it is to embrace digital advances.

Your field is cardiology – what makes you tick as a doctor? 
Well, the patients. But also the broader mission. I was in clinic all day yesterday – I love
seeing patients – but I also try to use whatever resources I can, to think about how can we do
things better, how can we have much better bonding, accuracy and precision in our care.

What’s the most promising medical application for artificial intelligence? 
In the short term, taking images and having far superior accuracy and speed – not that it
would supplant a doctor, but rather that it would be a first pass, an initial screen with

Cardiologist Eric Topol: 'AI
can restore the care in
healthcare'
Nicola Davis



oversight by a doctor. So whether it is a medical scan or a pathology slide or a skin lesion or
a colon polyp – that is the short-term story.

You talk about a future where people are constantly having parameters monitored – how
promising is that? 
You’re ahead of the curve there in the UK. If you think you might have a urinary tract
infection, you can go to the pharmacy, get an AI kit that accurately diagnoses your UTI and
get an antibiotic – and you never have to see a doctor. You can get an Apple Watch that will
detect your heart rate, and when something is off the track it will send you an alert to take
your cardiogram.

Is there a danger that this will mean more people become part of the “worried well”? 
It is even worse now because people do a Google search, then think they have a disease and
are going to die. At least this is your data so it has a better chance of being meaningful.

It is not for everyone. But even if half the people are into this, it is a major decompression on
what doctors are doing. It’s not for life-threatening matters, such as a diagnosis of cancer or
a new diagnosis of heart disease. It’s for the more common problems – and for most of these,
if people want, there is going to be AI diagnosis without a doctor.

If you had an AI GP – it could listen and respond to patients’ descriptions of their
symptoms but would it be able to physically examine them? 
I don’t think that you could simulate a real examination. But you could get select parts done
– for example, there have been recent AI studies of children with a cough, and just by the AI
interpretation of that sound, you could accurately diagnose the type of lung problem that it
is.

Smartphones can be used as imaging devices with ultrasound, so someday there could be an
inexpensive ultrasound probe. A person could image a part of their body, send that image to
be AI-interpreted, and then discuss it with a doctor.

One of the big ones is eyegrams, of the retina. You will be able to take a picture of your
retina, and find out if your blood pressure is well controlled, if your diabetes is well
controlled, if you have the beginnings of diabetic retinopathy or macular degeneration – that
is an exciting area for patients who are at risk.

What are the biggest technical and practical obstacles to using AI in healthcare? 
Well, there are plenty, a long list – privacy, security, the biases of the algorithms, inequities –
and making them worse because AI in healthcare is catering only to those who can afford it.

You talk about how AI might be able to spot people who have, or are at risk of developing,
mental health problems from analysis of social media messages. How would this work and
how do you prevent people’s mental health being assessed without their permission? 
I wasn’t suggesting social media be the only window into a person’s state of mind. Today
mental health can be objectively defined, whereas in the past it was highly subjective. We
are talking about speech pattern, tone, breathing pattern – when people sigh a lot, it denotes
depression – physical activity, how much people move around, how much they
communicate.

And then it goes on to facial recognition, social media posts, and other vital signs such as



heart rate and heart rhythm, so the collection of all these objective metrics can be used to
track a person’s mood state – and in people who are depressed, it can help show what is
working to get them out of that state, and help in predicting the risk of suicide.

Objective methods are doing better than psychologists or psychiatrists in predicting who is
at risk, so I think there is a lot of promise for mental health and AI.

If AI gets a diagnosis or treatment badly wrong, who gets sued? The author of the software
or the doctor or hospital that provides it? 
There aren’t any precedents yet. When you sign up with an app you are waiving all rights to
legal recourse. People never read the terms and conditions of course. So the company could
still be liable because there isn’t any real consent. For the doctors involved, it depends on
where that interaction is. What we do know is that there is a horrible problem with medical
errors today. So if we can clean that up and make them far fewer, that’s moving in the right
direction.

You were commissioned by Jeremy Hunt in 2018 to carry out a review of how the NHS
workforce will need to change “to deliver a digital future”. What was the biggest change
you recommended? 
I think the biggest change was to try and accelerate the incorporation of AI to give the gift of
time – to get back the patient-doctor relationship that we all were a part of 30, 40-plus years
ago. There is a new, unprecedented opportunity to seize this and restore the care in
healthcare that has been largely lost.

In the US, various Democratic candidates for 2020 are suggesting a government-backed
system – a bit like our NHS. Would this allow AI in healthcare to flourish without insurers
discriminating against patients with “bad data”and allow AI to fulfil its promise? 
Well I think it certainly helps. If you have a single system where you implement AI and you
have all the data in a common source, it is just much more liable to succeed. The NHS
efficiency of providing care with better outcomes than the US at a lower cost per person,
that is a lot about the fact you have got a superior model.

• Deep Medicine by Eric Topol is published by Basic Books (£25). To order a copy for £22 go to

guardianbookshop.com. Free UK p&p on all online orders over £15

Since you’re here…
… we have a small favour to ask. More people are reading and supporting The Guardian’s
independent, investigative journalism than ever before. And unlike many news
organisations, we have chosen an approach that allows us to keep our journalism accessible
to all, regardless of where they live or what they can afford. But we need your ongoing
support to keep working as we do.

The Guardian will engage with the most critical issues of our time – from the escalating
climate catastrophe to widespread inequality to the influence of big tech on our lives. At a
time when factual information is a necessity, we believe that each of us, around the world,
deserves access to accurate reporting with integrity at its heart.

Our editorial independence means we set our own agenda and voice our own opinions.
Guardian journalism is free from commercial and political bias and not influenced by
billionaire owners or shareholders. This means we can give a voice to those less heard,



explore where others turn away, and rigorously challenge those in power.
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to protect our precious independence. Every reader contribution, big or small, is so
valuable. Support The Guardian from as little as €1 – and it only takes a minute. Thank you.

Support The Guardian

 
Topics

Science
The Observer
Health, mind and body books
Science and nature books
interviews



© 2008 Ted Chiang. Originally published in Eclipse 2, edited by Jonathan Strahan 

 

 

Exhalation 
Ted Chiang  
 

 

It has long been said that air (which others call argon) is the source of life. This is not in fact 

the case, and I engrave these words to describe how I came to understand the true source of 

life and, as a corollary, the means by which life will one day end. 

 

For most of history, the proposition that we drew life from air was so obvious that there was 

no need to assert it. Every day we consume two lungs heavy with air; every day we remove 

the empty ones from our chest and replace them with full ones. If a person is careless and 

lets his air level run too low, he feels the heaviness of his limbs and the growing need for 

replenishment. It is exceedingly rare that a person is unable to get at least one replacement 

lung before his installed pair runs empty; on those unfortunate occasions where this has 

happened—when a person is trapped and unable to move, with no one nearby to assist 

him—he dies within seconds of his air running out. 

 

But in the normal course of life, our need for air is far from our thoughts, and indeed many 

would say that satisfying that need is the least important part of going to the filling stations. 

For the filling stations are the primary venue for social conversation, the places from which 

we draw emotional sustenance as well as physical. We all keep spare sets of full lungs in our 

homes, but when one is alone, the act of opening one’s chest and replacing one’s lungs can 

seem little better than a chore. In the company of others, however, it becomes a communal 

activity, a shared pleasure. 

 

If one is exceedingly busy, or feeling unsociable, one might simply pick up a pair of full lungs, 

install them, and leave one’s emptied lungs on the other side of the room. If one has a few 

minutes to spare, it’s simple courtesy to connect the empty lungs to an air dispenser and 

refill them for the next person. But by far the most common practice is to linger and enjoy 

the company of others, to discuss the news of the day with friends or acquaintances and, in 

passing, offer newly filled lungs to one’s interlocutor. While this perhaps does not constitute 

air sharing in the strictest sense, there is camaraderie derived from the awareness that all 

our air comes from the same source, for the dispensers are but the exposed terminals of 

pipes extending from the reservoir of air deep underground, the great lung of the world, the 

source of all our nourishment. 

 

Many lungs are returned to the same filling station the next day, but just as many circulate 

to other stations when people visit neighboring districts; the lungs are all identical in 

appearance, smooth cylinders of aluminum, so one cannot tell whether a given lung has 

always stayed close to home or whether it has traveled long distances. And just as lungs are 

passed between persons and districts, so are news and gossip. In this way one can receive 

news from remote districts, even those at the very edge of the world, without needing to 

leave home, although I myself enjoy traveling. I have journeyed all the way to the edge of 

the world, and seen the solid chromium wall that extends from the ground up into the 

infinite sky. 



© 2008 Ted Chiang. Originally published in Eclipse 2, edited by Jonathan Strahan 

 

 

It was at one of the filling stations that I first heard the rumors that prompted my 

investigation and led to my eventual enlightenment. It began innocently enough, with a 

remark from our district’s public crier. At noon of the first day of every year, it is traditional 

for the crier to recite a passage of verse, an ode composed long ago for this annual 

celebration, which takes exactly one hour to deliver. The crier mentioned that on his most 

recent performance, the turret clock struck the hour before he had finished, something that 

had never happened before. Another person remarked that this was a coincidence, because 

he had just returned from a nearby district where the public crier had complained of the 

same incongruity. 

 

No one gave the matter much thought beyond the simple acknowledgement that seemed 

warranted. It was only some days later, when there arrived word of a similar deviation 

between the crier and the clock of a third district, that the suggestion was made that these 

discrepancies might be evidence of a defect in the mechanism common to all the turret 

clocks, albeit a curious one to cause the clocks to run faster rather than slower. Horologists 

investigated the turret clocks in question, but on inspection they could discern no 

imperfection. In fact, when compared against the timepieces normally employed for such 

calibration purposes, the turret clocks were all found to have resumed keeping perfect time. 

 

I myself found the question somewhat intriguing, but I was too focused on my own studies 

to devote much thought to other matters. I was and am a student of anatomy, and to 

provide context for my subsequent actions, I now offer a brief account of my relationship 

with the field. 

 

Death is uncommon, fortunately, because we are durable and fatal mishaps are rare, but it 

makes difficult the study of anatomy, especially since many of the accidents serious enough 

to cause death leave the deceased’s remains too damaged for study. If lungs are ruptured 

when full, the explosive force can tear a body asunder, ripping the titanium as easily as if it 

were tin. In the past, anatomists focused their attention on the limbs, which were the most 

likely to survive intact. During the very first anatomy lecture I attended a century ago, the 

lecturer showed us a severed arm, the casing removed to reveal the dense column of rods 

and pistons within. I can vividly recall the way, after he had connected its arterial hoses to a 

wall-mounted lung he kept in the laboratory, he was able to manipulate the actuating rods 

that protruded from the arm’s ragged base, and in response the hand would open and close 

fitfully. 

 

In the intervening years, our field has advanced to the point where anatomists are able to 

repair damaged limbs and, on occasion, attach a severed limb. At the same time we have 

become capable of studying the physiology of the living; I have given a version of that first 

lecture I saw, during which I opened the casing of my own arm and directed my students’ 

attention to the rods that contracted and extended when I wiggled my fingers. 

 

Despite these advances, the field of anatomy still had a great unsolved mystery at its core: 

the question of memory. While we knew a little about the structure of the brain, its 

physiology is notoriously hard to study because of the brain’s extreme delicacy. It is typically 

the case in fatal accidents that, when the skull is breached, the brain erupts in a cloud of 
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gold, leaving little besides shredded filament and leaf from which nothing useful can be 

discerned. For decades the prevailing theory of memory was that all of a person’s 

experiences were engraved on sheets of gold foil; it was these sheets, torn apart by the 

force of the blast, that were the source of the tiny flakes found after accidents. Anatomists 

would collect the bits of gold leaf—so thin that light passes greenly through them—and 

spend years trying to reconstruct the original sheets, with the hope of eventually 

deciphering the symbols in which the deceased’s recent experiences were inscribed. 

 

I did not subscribe to this theory, known as the inscription hypothesis, for the simple reason 

that if all our experiences are in fact recorded, why is it that our memories are incomplete? 

Advocates of the inscription hypothesis offered an explanation for forgetfulness—suggesting 

that over time the foil sheets become misaligned from the stylus which reads the memories, 

until the oldest sheets shift out of contact with it altogether—but I never found it 

convincing. The appeal of the theory was easy for me to appreciate, though; I too had 

devoted many an hour to examining flakes of gold through a microscope, and can imagine 

how gratifying it would be to turn the fine adjustment knob and see legible symbols come 

into focus. 

 

More than that, how wonderful would it be to decipher the very oldest of a deceased 

person’s memories, ones that he himself had forgotten? None of us can remember much 

more than a hundred years in the past, and written records—accounts that we ourselves 

inscribed but have scant memory of doing so—extend only a few hundred years before that. 

How many years did we live before the beginning of written history? Where did we come 

from? It is the promise of finding the answers within our own brains that makes the 

inscription hypothesis so seductive. 

 

I was a proponent of the competing school of thought, which held that our memories were 

stored in some medium in which the process of erasure was no more difficult than 

recording: perhaps in the rotation of gears, or the positions of a series of switches. This 

theory implied that everything we had forgotten was indeed lost, and our brains contained 

no histories older than those found in our libraries. One advantage of this theory was that it 

better explained why, when lungs are installed in those who have died from lack of air, the 

revived have no memories and are all but mindless: Somehow the shock of death had reset 

all the gears or switches. The inscriptionists claimed the shock had merely misaligned the foil 

sheets, but no one was willing to kill a living person, even an imbecile, in order to resolve the 

debate. I had envisioned an experiment which might allow me to determine the truth 

conclusively, but it was a risky one, and deserved careful consideration before it was 

undertaken. I remained undecided for the longest time, until I heard more news about the 

clock anomaly. 

 

Word arrived from a more distant district that its public crier had likewise observed the 

turret clock striking the hour before he had finished his new year’s recital. What made this 

notable was that his district’s clock employed a different mechanism, one in which the hours 

were marked by the flow of mercury into a bowl. Here the discrepancy could not be 

explained by a common mechanical fault. Most people suspected fraud, a practical joke 

perpetrated by mischief makers. I had a different suspicion, a darker one that I dared not 

voice, but it decided my course of action; I would proceed with my experiment. 
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The first tool I constructed was the simplest: in my laboratory I fixed four prisms on 

mounting brackets and carefully aligned them so that their apexes formed the corners of a 

rectangle. When arranged thus, a beam of light directed at one of the lower prisms was 

reflected up, then backward, then down, and then forward again in a quadrilateral loop. 

Accordingly, when I sat with my eyes at the level of the first prism, I obtained a clear view of 

the back of my own head. This solipsistic periscope formed the basis of all that was to come. 

 

A similarly rectangular arrangement of actuating rods allowed a displacement of action to 

accompany the displacement of vision afforded by the prisms. The bank of actuating rods 

was much larger than the periscope, but still relatively straightforward in design; by 

contrast, what was attached to the end of these respective mechanisms was far more 

intricate. To the periscope I added a binocular microscope mounted on an armature capable 

of swiveling side to side or up and down. To the actuating rods I added an array of precision 

manipulators, although that description hardly does justice to those pinnacles of the 

mechanician’s art. Combining the ingenuity of anatomists and the inspiration provided by 

the bodily structures they studied, the manipulators enabled their operator to accomplish 

any task he might normally perform with his own hands, but on a much smaller scale. 

 

Assembling all of this equipment took months, but I could not afford to be anything less than 

meticulous. Once the preparations were complete, I was able to place each of my hands on a 

nest of knobs and levers and control a pair of manipulators situated behind my head, and 

use the periscope to see what they worked on. I would then be able to dissect my own brain. 

 

The very idea must sound like pure madness, I know, and had I told any of my colleagues, 

they would surely have tried to stop me. But I could not ask anyone else to risk themselves 

for the sake of anatomical inquiry, and because I wished to conduct the dissection myself, I 

would not be satisfied by merely being the passive subject of such an operation. Auto-

dissection was the only option. 

 

I brought in a dozen full lungs and connected them with a manifold. I mounted this assembly 

beneath the worktable that I would sit at, and positioned a dispenser to connect directly to 

the bronchial inlets within my chest. This would supply me with six days’ worth of air. To 

provide for the possibility that I might not have completed my experiment within that 

period, I had scheduled a visit from a colleague at the end of that time. My presumption, 

however, was that the only way I would not have finished the operation in that period would 

be if I had caused my own death. 

 

I began by removing the deeply curved plate that formed the back and top of my head; then 

the two, more shallowly curved plates that formed the sides. Only my faceplate remained, 

but it was locked into a restraining bracket, and I could not see its inner surface from the 

vantage point of my periscope; what I saw exposed was my own brain. It consisted of a 

dozen or more subassemblies, whose exteriors were covered by intricately molded shells; by 

positioning the periscope near the fissures that separated them, I gained a tantalizing 

glimpse at the fabulous mechanisms within their interiors. Even with what little I could see, I 

could tell it was the most beautifully complex engine I had ever beheld, so far beyond any 

device man had constructed that it was incontrovertibly of divine origin. The sight was both 
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exhilarating and dizzying, and I savored it on a strictly aesthetic basis for several minutes 

before proceeding with my explorations. 

 

It was generally hypothesized that the brain was divided into an engine located in the center 

of the head which performed the actual cognition, surrounded by an array of components in 

which memories were stored. What I observed was consistent with this theory, since the 

peripheral subassemblies seemed to resemble one another, while the subassembly in the 

center appeared to be different, more heterogeneous and with more moving parts. However 

the components were packed too closely for me to see much of their operation; if I intended 

to learn anything more, I would require a more intimate vantage point. 

 

Each subassembly had a local reservoir of air, fed by a hose extending from the regulator at 

the base of my brain. I focused my periscope on the rearmost subassembly and, using the 

remote manipulators, I quickly disconnected the outlet hose and installed a longer one in its 

place. I had practiced this maneuver countless times so that I could perform it in a matter of 

moments; even so, I was not certain I could complete the connection before the 

subassembly had depleted its local reservoir. Only after I was satisfied that the component’s 

operation had not been interrupted did I continue; I rearranged the longer hose to gain a 

better view of what lay in the fissure behind it: other hoses that connected it to its 

neighboring components. Using the most slender pair of manipulators to reach into the 

narrow crevice, I replaced the hoses one by one with longer substitutes. Eventually, I had 

worked my way around the entire subassembly and replaced every connection it had to the 

rest of my brain. I was now able to unmount this subassembly from the frame that 

supported it, and pull the entire section outside of what was once the back of my head. 

 

I knew it was possible I had impaired my capacity to think and was unable to recognize it, 

but performing some basic arithmetic tests suggested that I was uninjured. With one 

subassembly hanging from a scaffold above, I now had a better view of the cognition engine 

at the center of my brain, but there was not enough room to bring the microscope 

attachment itself in for a close inspection. In order for me to really examine the workings of 

my brain, I would have to displace at least half a dozen subassemblies. 

 

Laboriously, painstakingly, I repeated the procedure of substituting hoses for other 

subassemblies, repositioning another one farther back, two more higher up, and two others 

out to the sides, suspending all six from the scaffold above my head. When I was done, my 

brain looked like an explosion frozen an infinitesimal fraction of a second after the 

detonation, and again I felt dizzy when I thought about it. But at last the cognition engine 

itself was exposed, supported on a pillar of hoses and actuating rods leading down into my 

torso. I now also had room to rotate my microscope around a full three hundred and sixty 

degrees, and pass my gaze across the inner faces of the subassemblies I had moved. What I 

saw was a microcosm of auric machinery, a landscape of tiny spinning rotors and miniature 

reciprocating cylinders. 

 

As I contemplated this vista, I wondered, where was my body? The conduits which displaced 

my vision and action around the room were in principle no different from those which 

connected my original eyes and hands to my brain. For the duration of this experiment, were 

these manipulators not essentially my hands? Were the magnifying lenses at the end of my 
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periscope not essentially my eyes? I was an everted person, with my tiny, fragmented body 

situated at the center of my own distended brain. It was in this unlikely configuration that I 

began to explore myself. 

 

I turned my microscope to one of the memory subassemblies, and began examining its 

design. I had no expectation that I would be able to decipher my memories, only that I might 

divine the means by which they were recorded. As I had predicted, there were no reams of 

foil pages visible, but to my surprise neither did I see banks of gearwheels or switches. 

Instead, the subassembly seemed to consist almost entirely of a bank of air tubules. Through 

the interstices between the tubules I was able to glimpse ripples passing through the bank’s 

interior. 

 

With careful inspection and increasing magnification, I discerned that the tubules ramified 

into tiny air capillaries, which were interwoven with a dense latticework of wires on which 

gold leaves were hinged. Under the influence of air escaping from the capillaries, the leaves 

were held in a variety of positions. These were not switches in the conventional sense, for 

they did not retain their position without a current of air to support them, but I 

hypothesized that these were the switches I had sought, the medium in which my memories 

were recorded. The ripples I saw must have been acts of recall, as an arrangement of leaves 

was read and sent back to the cognition engine. 

 

Armed with this new understanding, I then turned my microscope to the cognition engine. 

Here too I observed a latticework of wires, but they did not bear leaves suspended in 

position; instead the leaves flipped back and forth almost too rapidly to see. Indeed, almost 

the entire engine appeared to be in motion, consisting more of lattice than of air capillaries, 

and I wondered how air could reach all the gold leaves in a coherent manner. For many 

hours I scrutinized the leaves, until I realized that they themselves were playing the role of 

capillaries; the leaves formed temporary conduits and valves that existed just long enough to 

redirect air at other leaves in turn, and then disappeared as a result. This was an engine 

undergoing continuous transformation, indeed modifying itself as part of its operation. The 

lattice was not so much a machine as it was a page on which the machine was written, and 

on which the machine itself ceaselessly wrote. 

 

My consciousness could be said to be encoded in the position of these tiny leaves, but it 

would be more accurate to say that it was encoded in the ever-shifting pattern of air driving 

these leaves. Watching the oscillations of these flakes of gold, I saw that air does not, as we 

had always assumed, simply provide power to the engine that realizes our thoughts. Air is in 

fact the very medium of our thoughts. All that we are is a pattern of air flow. My memories 

were inscribed, not as grooves on foil or even the position of switches, but as persistent 

currents of argon. 

 

In the moments after I grasped the nature of this lattice mechanism, a cascade of insights 

penetrated my consciousness in rapid succession. The first and most trivial was 

understanding why gold, the most malleable and ductile of metals, was the only material out 

of which our brains could be made. Only the thinnest of foil leaves could move rapidly 

enough for such a mechanism, and only the most delicate of filaments could act as hinges 

for them. By comparison, the copper burr raised by my stylus as I engrave these words and 
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brushed from the sheet when I finish each page is as coarse and heavy as scrap. This truly 

was a medium where erasing and recording could be performed rapidly, far more so than 

any arrangement of switches or gears. 

 

What next became clear was why installing full lungs into a person who has died from lack of 

air does not bring him back to life. These leaves within the lattice remain balanced between 

continuous cushions of air. This arrangement lets them flit back and forth swiftly, but it also 

means that if the flow of air ever ceases, everything is lost; the leaves all collapse into 

identical pendent states, erasing the patterns and the consciousness they represent. 

Restoring the air supply cannot recreate what has evanesced. This was the price of speed; a 

more stable medium for storing patterns would mean that our consciousnesses would 

operate far more slowly. 

 

It was then that I perceived the solution to the clock anomaly. I saw that the speed of these 

leaves’ movements depended on their being supported by air; with sufficient air flow, the 

leaves could move nearly frictionlessly. If they were moving more slowly, it was because 

they were being subjected to more friction, which could occur only if the cushions of air that 

supported them were thinner, and the air flowing through the lattice was moving with less 

force. 

 

It is not that the turret clocks are running faster. What is happening is that our brains are 

running slower. The turret clocks are driven by pendulums, whose tempo never varies, or by 

the flow of mercury through a pipe, which does not change. But our brains rely on the 

passage of air, and when that air flows more slowly, our thoughts slow down, making the 

clocks seem to us to run faster. 

 

I had feared that our brains might be growing slower, and it was this prospect that had 

spurred me to pursue my auto-dissection. But I had assumed that our cognition engines—

while powered by air—were ultimately mechanical in nature, and some aspect of the 

mechanism was gradually becoming deformed through fatigue, and thus responsible for the 

slowing. That would have been dire, but there was at least the hope that we might be able 

to repair the mechanism, and restore our brains to their original speed of operation. 

 

But if our thoughts were purely patterns of air rather than the movement of toothed gears, 

the problem was much more serious, for what could cause the air flowing through every 

person’s brain to move less rapidly? It could not be a decrease in the pressure from our 

filling stations’ dispensers; the air pressure in our lungs is so high that it must be stepped 

down by a series of regulators before reaching our brains. The diminution in force, I saw, 

must arise from the opposite direction: The pressure of our surrounding atmosphere was 

increasing. 

 

How could this be? As soon as the question formed, the only possible answer became 

apparent: Our sky must not be infinite in height. Somewhere above the limits of our vision, 

the chromium walls surrounding our world must curve inward to form a dome; our universe 

is a sealed chamber rather than an open well. And air is gradually accumulating within that 

chamber, until it equals the pressure in the reservoir below. 
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This is why, at the beginning of this engraving, I said that air is not the source of life. Air can 

neither be created nor destroyed; the total amount of air in the universe remains constant, 

and if air were all that we needed to live, we would never die. But in truth the source of life 

is a difference in air pressure, the flow of air from spaces where it is thick to those where it is 

thin. The activity of our brains, the motion of our bodies, the action of every machine we 

have ever built is driven by the movement of air, the force exerted as differing pressures 

seek to balance each other out. When the pressure everywhere in the universe is the same, 

all air will be motionless, and useless; one day we will be surrounded by motionless air and 

unable to derive any benefit from it. 

 

We are not really consuming air at all. The amount of air that I draw from each day’s new 

pair of lungs is exactly as much as seeps out through the joints of my limbs and the seams of 

my casing, exactly as much as I am adding to the atmosphere around me; all I am doing is 

converting air at high pressure to air at low. With every movement of my body, I contribute 

to the equalization of pressure in our universe. With every thought that I have, I hasten the 

arrival of that fatal equilibrium. 

 

Had I come to this realization under any other circumstance, I would have leapt up from my 

chair and ran into the streets, but in my current situation—body locked in a restraining 

bracket, brain suspended across my laboratory—doing so was impossible. I could see the 

leaves of my brain flitting faster from the tumult of my thoughts, which in turn increased my 

agitation at being so restrained and immobile. Panic at that moment might have led to my 

death, a nightmarish paroxysm of simultaneously being trapped and spiraling out of control, 

struggling against my restraints until my air ran out. It was by chance as much as by intention 

that my hands adjusted the controls to avert my periscopic gaze from the latticework, so all I 

could see was the plain surface of my worktable. Thus freed from having to see and magnify 

my own apprehensions, I was able to calm down. When I had regained sufficient composure, 

I began the lengthy process of reassembling myself. Eventually I restored my brain to its 

original compact configuration, reattached the plates of my head, and released myself from 

the restraining bracket. 

 

At first the other anatomists did not believe me when I told them what I had discovered, but 

in the months that followed my initial auto-dissection, more and more of them became 

convinced. More examinations of people’s brains were performed, more measurements of 

atmospheric pressure were taken, and the results were all found to confirm my claims. The 

background air pressure of our universe was indeed increasing, and slowing our thoughts as 

a result. 

 

There was widespread panic in the days after the truth first became widely known, as people 

contemplated for the first time the idea that death was inevitable. Many called for the strict 

curtailment of activities in order to minimize the thickening of our atmosphere; accusations 

of wasted air escalated into furious brawls and, in some districts, deaths. It was the shame of 

having caused these deaths, together with the reminder that it would be many centuries yet 

before our atmosphere’s pressure became equal to that of the reservoir underground, that 

caused the panic to subside. We are not sure precisely how many centuries it will take; 

additional measurements and calculations are being performed and debated. In the 

meantime, there is much discussion over how we should spend the time that remains to us. 
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One sect has dedicated itself to the goal of reversing the equalization of pressure, and found 

many adherents. The mechanicians among them constructed an engine that takes air from 

our atmosphere and forces it into a smaller volume, a process they called “compression.” 

Their engine restores air to the pressure it originally had in the reservoir, and these 

Reversalists excitedly announced that it would form the basis of a new kind of filling station, 

one that would—with each lung it refilled—revitalize not only individuals but the universe 

itself. Alas, closer examination of the engine revealed its fatal flaw. The engine itself is 

powered by air from the reservoir, and for every lungful of air that it produces, the engine 

consumes not just a lungful, but slightly more. It does not reverse the process of 

equalization, but like everything else in the world, exacerbates it. 

 

Although some of their adherents left in disillusionment after this setback, the Reversalists 

as a group were undeterred, and began drawing up alternate designs in which the 

compressor was powered instead by the uncoiling of springs or the descent of weights. 

These mechanisms fared no better. Every spring that is wound tight represents air released 

by the person who did the winding; every weight that rests higher than ground level 

represents air released by the person who did the lifting. There is no source of power in the 

universe that does not ultimately derive from a difference in air pressure, and there can be 

no engine whose operation will not, on balance, reduce that difference. 

 

The Reversalists continue their labors, confident that they will one day construct an engine 

that generates more compression than it uses, a perpetual power source that will restore to 

the universe its lost vigor. I do not share their optimism; I believe that the process of 

equalization is inexorable. Eventually, all the air in our universe will be evenly distributed, no 

denser or more rarefied in one spot than in any other, unable to drive a piston, turn a rotor, 

or flip a leaf of gold foil. It will be the end of pressure, the end of motive power, the end of 

thought. The universe will have reached perfect equilibrium. 

 

Some find irony in the fact that a study of our brains revealed to us not the secrets of the 

past, but what ultimately awaits us in the future. However, I maintain that we have indeed 

learned something important about the past. The universe began as an enormous breath 

being held. Who knows why, but whatever the reason, I am glad that it did, because I owe 

my existence to that fact. All my desires and ruminations are no more and no less than eddy 

currents generated by the gradual exhalation of our universe. And until this great exhalation 

is finished, my thoughts live on. 

 

So that our thoughts may continue as long as possible, anatomists and mechanicians are 

designing replacements for our cerebral regulators, capable of gradually increasing the air 

pressure within our brains and keeping it just higher than the surrounding atmospheric 

pressure. Once these are installed, our thoughts will continue at roughly the same speed 

even as the air thickens around us. But this does not mean that life will continue unchanged. 

Eventually the pressure differential will fall to such a level that our limbs will weaken and our 

movements will grow sluggish. We may then try to slow our thoughts so that our physical 

torpor is less conspicuous to us, but that will also cause external processes to appear to 

accelerate. The ticking of clocks will rise to a chatter as their pendulums wave frantically; 
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falling objects will slam to the ground as if propelled by springs; undulations will race down 

cables like the crack of a whip. 

 

At some point our limbs will cease moving altogether. I cannot be certain of the precise 

sequence of events near the end, but I imagine a scenario in which our thoughts will 

continue to operate, so that we remain conscious but frozen, immobile as statues. Perhaps 

we’ll be able to speak for a while longer, because our voice boxes operate on a smaller 

pressure differential than our limbs, but without the ability to visit a filling station, every 

utterance will reduce the amount of air left for thought, and bring us closer to the moment 

that our thoughts cease altogether. Will it be preferable to remain mute to prolong our 

ability to think, or to talk until the very end? I don’t know. 

 

Perhaps a few of us, in the days before we cease moving, will be able to connect our 

cerebral regulators directly to the dispensers in the filling stations, in effect replacing our 

lungs with the mighty lung of the world. If so, those few will be able to remain conscious 

right up to the final moments before all pressure is equalized. The last bit of air pressure left 

in our universe will be expended driving a person’s conscious thought. 

 

And then, our universe will be in a state of absolute equilibrium. All life and thought will 

cease, and with them, time itself. 

 

But I maintain a slender hope. 

 

Even though our universe is enclosed, perhaps it is not the only air chamber in the infinite 

expanse of solid chromium. I speculate that there could be another pocket of air elsewhere, 

another universe besides our own that is even larger in volume. It is possible that this 

hypothetical universe has the same or higher air pressure as ours, but suppose that it had a 

much lower air pressure than ours, perhaps even a true vacuum? 

 

The chromium that separates us from this supposed universe is too thick and too hard for us 

to drill through, so there is no way we could reach it ourselves, no way to bleed off the 

excess atmosphere from our universe and regain motive power that way. But I fantasize that 

this neighboring universe has its own inhabitants, ones with capabilities beyond our own. 

What if they were able to create a conduit between the two universes, and install valves to 

release air from ours? They might use our universe as a reservoir, running dispensers with 

which they could fill their own lungs, and use our air as a way to drive their own civilization. 

 

It cheers me to imagine that the air that once powered me could power others, to believe 

that the breath that enables me to engrave these words could one day flow through 

someone else’s body. I do not delude myself into thinking that this would be a way for me to 

live again, because I am not that air, I am the pattern that it assumed, temporarily. The 

pattern that is me, the patterns that are the entire world in which I live, would be gone. 

 

But I have an even fainter hope: that those inhabitants not only use our universe as a 

reservoir, but that once they have emptied it of its air, they might one day be able to open a 

passage and actually enter our universe as explorers. They might wander our streets, see our 

frozen bodies, look through our possessions, and wonder about the lives we led. 
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Which is why I have written this account. You, I hope, are one of those explorers. You, I 

hope, found these sheets of copper and deciphered the words engraved on their surfaces. 

And whether or not your brain is impelled by the air that once impelled mine, through the 

act of reading my words, the patterns that form your thoughts become an imitation of the 

patterns that once formed mine. And in that way I live again, through you. 

 

Your fellow explorers will have found and read the other books that we left behind, and 

through the collaborative action of your imaginations, my entire civilization lives again. As 

you walk through our silent districts, imagine them as they were; with the turret clocks 

striking the hours, the filling stations crowded with gossiping neighbors, criers reciting verse 

in the public squares and anatomists giving lectures in the classrooms. Visualize all of these 

the next time you look at the frozen world around you, and it will become, in your minds, 

animated and vital again. 

 

I wish you well, explorer, but I wonder: Does the same fate that befell me await you? I can 

only imagine that it must, that the tendency toward equilibrium is not a trait peculiar to our 

universe but inherent in all universes. Perhaps that is just a limitation of my thinking, and 

your people have discovered a source of pressure that is truly eternal. But my speculations 

are fanciful enough already. I will assume that one day your thoughts too will cease, 

although I cannot fathom how far in the future that might be. Your lives will end just as ours 

did, just as everyone’s must. No matter how long it takes, eventually equilibrium will be 

reached. 

 

I hope you are not saddened by that awareness. I hope that your expedition was more than 

a search for other universes to use as reservoirs. I hope that you were motivated by a desire 

for knowledge, a yearning to see what can arise from a universe’s exhalation. Because even 

if a universe’s lifespan is calculable, the variety of life that is generated within it is not. The 

buildings we have erected, the art and music and verse we have composed, the very lives 

we’ve led: None of them could have been predicted, because none of them were inevitable. 

Our universe might have slid into equilibrium emitting nothing more than a quiet hiss. The 

fact that it spawned such plenitude is a miracle, one that is matched only by your universe 

giving rise to you. 

 

Though I am long dead as you read this, explorer, I offer to you a valediction. Contemplate 

the marvel that is existence, and rejoice that you are able to do so. I feel I have the right to 

tell you this because, as I am inscribing these words, I am doing the same. 
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Admission
conditions

The application 
& selection process
-
Selecting the right student is about more than just test scores. 
At emlyon business school, we consider an entire applicant’s 
potential.

Motivation and background are equally important. Our online 
application procedure will be open from November onwards.

After online applications (including a video exercise) are 
reviewed, eligible applicants will be notifi ed by the Admissions 
Board.

Requirements
-
The program welcomes students from various backgrounds 
and countries around the world. 
Admission is based on the following requirements:
•   Bachelor’s or Master’s Degree in any fi eld

Please note: a 3-year Bachelor’s degree may be accepted for 
excellent candidates, including French Bac +3

•   GMAT/GRE/TAGE MAGE/CAT Test Scores (optional)
•   English Profi ciency Test Score (TOEIC, TOEFL, IELTS, PTE, 

Cambridge Profi ciency test) (optional)    

Tuition fees
-
Fees for September 2019 intake: €22,000.

This includes tuition fees, enrollment charges (administrative 
costs, contribution to the student body, school sports activities 
and international mobility insurance), and lifelong membership 
of the emlyon business school forever alumni network. 
Students who do not complete their course by December 2020 
will need to pay additional enrollment charges of €500 
for the extra year.

Available scholarships
-
As a socially responsible institution, every year, emlyon 
business school helps high-potential students to pay for their 
studies by awarding various scholarships. 

Scholarships are awarded based on multiple criteria including 
diversity, entrepreneurial mindset, excellence and need. Please 
refer to the specifi c document on scholarships for more details.

This program welcomes graduates from engineering schools, management schools and universities. Depending on your profi le, 
you may need to acquire some fundamentals via e-learning (basics in management, data and digital which will be the focus during 
the fi rst weeks). It is important that you have a clear understanding of the health sector and its businesses to be able to develop 
and implement your professional project over the 18-month program. Our admissions team is available to advise you on your 
profi le before you apply.
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By	Annabel	Acton Founder,	Never	Liked	It	Anyway @annabelacton

INNOVATE

Having	a	Good	Idea	Is	Not	Enough.	Here's	How	to
Turn	Yours	Into	a	Valuable	Business

Steal	these	tricks	from	innovation	consultants	to	help	develop	your	idea	into	a	million
dollar	business

GETTY	IMAGES

You	have	a	killer	business	idea.	You're	excited	to	bring	it	to	the	world.	But	how	do	you
make	it	happen?	How	does	the	seed	of	an	idea	actually	help	you	know	how	to	build	a
successful	business?	You	don't	need	to	race	to	raise	capital	or	build	out	an	overly
sophisticated	product	to	get	going.	In	fact,	this	is	an	expensive	and	unnecessary
approach,	especially	when	an	idea	is	in	its	infancy.	Instead	of	racing	towards	developing
a	�nal	product,	you	should	take	time	to	test	the	bones	of	your	idea	and	re�ne	the
concept.	Here	are	the	key	tricks	and	tips	an	innovation	consultant	uses	to	make	sure	the
idea	is	ready	for	development.

1.	Make	Sure	You	Are	Actually	Solving	A	Problem



First	things	�rst,	you	must	be	solving	a	problem	that	actually	matters	to	people.	One	big
reason	the	Segway	failed	to	be	"As	big	as	the	PC",	as	Steve	Jobs	had	predicted,	was	that
it	failed	to	solve	a	real	need.	Nobody	was	looking	for	a	mode	of	transportation	that	went
slightly	faster	than	walking,	without	bag	storage,	or	clarity	on	whether	it	was	road	or
pavement	worthy;	except	mall	cops.	Take	time	to	distil	exactly	what	it	is	that	your	idea	is
solving,	and	then	�gure	out	if	it's	something	people	care	enough	about	to	turn	to	your
business.	Often,	the	best	business	ideas	are	born	out	of	personal	frustration.	For
example,	Richard	Branson,	decided	to	create	Virgin	after	being	fed	up	as	an	airline
passenger.	In	true	Branson	fashion,	he	said,	"Screw	it,	I	can	do	it	better	than	you."	Use
your	personal	insight	as	a	starting	point,	and	then	corroborate	from	other	people	that	you
are	actually	solving	a	real	need.

Try:	Try	creating	an	online	survey,	mining	your	social	networks	for	data,	hosting	man-on-
the-street	interviews,	exploring	the	20/20/20	test,	soaking	up	data	and	trend	reports
related	to	your	category	and	scouring	intel	on	competitors	that	both	worked	and	failed.

2.	Tell	Everyone
There's	a	myth	going	around	that	if	you	have	a	blockbuster	idea,	you	have	to	keep	it	all	to
yourself	and	not	tell	a	soul.	After	all,	they	might	steal	your	brilliance.	However,	having	an
idea	and	bringing	an	idea	to	life	are	two	wildly	different	things.	Ideation	is	easy,
implementation	is	not.It	requires	bucket	loads	of	tenacity,	grit,	patience,	money,	time	and
a	little	bit	of	luck.	When	you	talk	to	people	about	you	idea,	you	get	valuable	feedback,
input	and	builds	on	the	concept.	No	doubt	someone	will	open	your	eyes	to	an	angle	you
hadn't	yet	considered,	or	a	feature	that	you	wouldn't	have	deemed	important	or	a
marketing	angle	you	may	have	overlooked	entirely.	These	inputs	are	enormously	helpful
and	best	of	all,	they're	free.

Try:	Finding	a	mentor,	pitching	at	a	demo	day,	telling	your	friends,	family	and	anyone	who
will	listen.

3.	List	Your	Assumptions



PUBLISHED	ON:	JUL	13,	2017

Before	you	commit	to	building	a	prototype	or	invest	heavily	in	an	MVP,	start	by	listing	all
the	assumptions	that	need	to	be	true	in	order	for	your	business	to	work.	Create	a	long	list,
that	walks	through	your	idea	from	start	to	�nish	-	and	make	sure	to	include	even	the	most
basic	of	assumptions.	For	example,	assumptions	for	a	restaurant	booking	service	might
include	things	like:	people	�nd	booking	restaurants	hard,	people	would	pay	for	someone
to	solve	this	problem,	restaurants	would	be	open	to	outsourcing	bookings,	people	want	to
be	rewarded	for	their	participation.	Once	you	have	your	assumption	stack,	start	to	think
about	how	you	might	prioritize	them	in	order	importance;	from	critical	to	trivial.

Try:	Build	an	assumption	stack	that	spells	out	all	the	elements	that	need	to	be	in	place	for
you	to	be	successful.	Next	prioritize	the	assumptions:	which	ones	MUST	hold	true	in
order	to	be	successful

4.	Test	Your	Assumptions
Take	your	list	of	prioritized	assumptions	and	�nd	small	ways	to	test	them.	This	could
include	building	an	MVP	or	prototype	that	will	get	to	the	heart	of	your	assumption	stack.
You	can	be	smart	about	this	too.	For	example,	Tough	Mudder	CEO	Will	Dean	grew	Tough
Mudder	into	a	$100	Million	business,	from	just	$7,000	in	savings.	At	the	heart	of	his
business	lay	an	assumption	that	people	would	want	to	endure	arduous	conditions	while
exercising.	To	test	his	assumption,	he	pre-sold	tickets	to	races	and	used	the	money
raised	to	build	the	torturous	obstacle	course.

Try:	Finding	smart	ways	to	test	your	assumption.	Avoid	building	out	a	whole	product	if
you	can.

The	opinions	expressed	here	by	Inc.com	columnists	are	their	own,	not	those	of	Inc.com.

More	from	Inc.
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Purpose: To develop a machine learning model that allows high-
risk breast lesions (HRLs) diagnosed with image-guided 
needle biopsy that require surgical excision to be distin-
guished from HRLs that are at low risk for upgrade to 
cancer at surgery and thus could be surveilled. 

Materials and 
Methods:

Consecutive patients with biopsy-proven HRLs who un-
derwent surgery or at least 2 years of imaging follow-up 
from June 2006 to April 2015 were identified. A random 
forest machine learning model was developed to identify 
HRLs at low risk for upgrade to cancer. Traditional fea-
tures such as age and HRL histologic results were used in 
the model, as were text features from the biopsy patho-
logic report.

Results: One thousand six HRLs were identified, with a cancer 
upgrade rate of 11.4% (115 of 1006). A machine learn-
ing random forest model was developed with 671 HRLs 
and tested with an independent set of 335 HRLs. Among 
the most important traditional features were age and HRL 
histologic results (eg, atypical ductal hyperplasia). An im-
portant text feature from the pathologic reports was “se-
verely atypical.” Instead of surgical excision of all HRLs, 
if those categorized with the model to be at low risk for 
upgrade were surveilled and the remainder were excised, 
then 97.4% (37 of 38) of malignancies would have been 
diagnosed at surgery, and 30.6% (91 of 297) of surgeries 
of benign lesions could have been avoided.

Conclusion: This study provides proof of concept that a machine learn-
ing model can be applied to predict the risk of upgrade of 
HRLs to cancer. Use of this model could decrease unnec-
essary surgery by nearly one-third and could help guide 
clinical decision making with regard to surveillance versus 
surgical excision of HRLs.

q RSNA, 2017

Manisha Bahl, MD, MPH
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machine learning algorithms to this spe-
cific challenging clinical scenario of HRLs 
and incorporated the full spectrum of 
diverse and complex data available for 
risk-stratification purposes.

A machine learning model in the 
clinical setting could support informed 
decision making for patients and their 
providers regarding surveillance versus 
surgical excision of HRLs and could re-
duce unnecessary surgical excision of 
HRLs. The purpose of this study was 
to develop a machine learning model 
that allows HRLs diagnosed with image-
guided needle biopsy that require sur-
gical excision to be distinguished from 
HRLs that are at low risk for upgrade 
to cancer at surgery and thus could be 
surveilled.

Materials and Methods

Study Population
This study was approved by the insti-
tutional review board with a waiver for 
the need to obtain informed consent and 
was compliant with the Health Insurance 
Portability and Accountability Act. The 
study cohort comprised consecutive 
women at a tertiary academic medical 
center who underwent image-guided 
core-needle biopsy from June 1, 2006, 

cancer; HRL histologic results such as 
atypical ductal hyperplasia (ADH); im-
aging variables such as lesion type at 
mammography; and image guidance 
and biopsy device used for sampling (ie, 
stereotactically vs ultrasonographically 
guided and small- vs large-gauge needle 
biopsy device). Despite these efforts, 
there are no definite features that reli-
ably allow lesions that warrant surgical 
excision to be distinguished from those 
that can be surveilled safely, which has 
led to wide variation in treatment (7). 
At our institution, more than 95% of 
patients undergo surgical excision for 
HRLs diagnosed with image-guided 
core-needle biopsy; and, therefore, sur-
gical outcomes are known for most of 
our patients.

Machine learning refers to algo-
rithms that can be designed to evaluate 
and make predictions on the basis of 
new and complex features (26,27). A 
machine learning model that incorpo-
rates the full spectrum of patient data 
offers a means to stratify patients with 
HRLs diagnosed with core-needle biopsy 
according to risk and thereby reduce un-
necessary surgical interventions. With 
an annotated training set, in which the 
surgical outcomes are known, the model 
can allow relationships in the provided 
data to be discovered and combinations 
of features that are accurate predictors 
of risk of cancer upgrade to be identi-
fied. Once the model is developed, it can 
then be applied to classify new cases 
in which the surgical outcomes are not 
known. To our knowledge, there are no 
studies in which the authors applied 

https://doi.org/10.1148/radiol.2017170549
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Advances in Knowledge

 n Our machine learning model, 
which was developed to help dis-
tinguish high-risk breast lesions 
(HRLs) that require surgical exci-
sion from those that could be 
surveilled, was based on estab-
lished risk factors such as patient 
age and HRL histologic results 
(with the inclusion of more than 
20 000 data elements) and an 
additional feature of the biopsy 
pathologic report text.

 n Instead of surgical excision of all 
HRLs, if HRLs categorized with 
our model to be at low risk for 
upgrade to cancer were sur-
veilled and the remainder were 
excised, then 97.4% (37 of 38) 
of malignancies would be diag-
nosed at surgery, and 30.6% (91 
of 297) of surgeries of benign 
lesions could be avoided.

Implications for Patient Care

 n Our machine learning model inte-
grates a diversity of complex fea-
tures to identify women at low 
risk for upgrade to cancer after 
diagnosis of an HRL.

 n Machine learning could inform 
shared decision making by the 
patient and the provider re-
garding surveillance versus sur-
gical excision of HRLs and thus 
could support more targeted, 
personalized approaches to 
patient care.

Early detection of breast cancer 
with screening mammography 
reduces mortality from breast 

cancer and provides women diagnosed 
with breast cancer more options for 
less-aggressive treatment (1,2). Al-
though the benefits of early detection of 
breast cancer are acknowledged widely, 
continued concerns are raised regard-
ing potential harms associated with un-
necessary biopsies and surgeries that 
are triggered by imaging findings in 
patients who do not have breast can-
cer (3,4). Up to 14% of image-guided 
biopsies performed on the basis of sus-
picious mammograms yield high-risk 
breast lesions (HRLs) (5,6). Most HRLs 
are benign, but surgical excision typi-
cally is recommended because of the 
low but present potential for upgrade to 
ductal carcinoma in situ or invasive ma-
lignancy at surgical excision (7,8). The 
resulting status quo is overtreatment 
with unnecessary surgery for HRLs that 
are not associated with malignancy.

Authors of multiple studies (7–25) 
have investigated patient and imaging 
features to better stratify patients with 
HRLs according to risk. Features con-
sidered included patient variables such 
as age and personal history of breast 
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yielded more than one HRL, the type 
of HRL with the highest risk was used 
for data presentation on the basis of 
the following hierarchy: ADH is greater 
than lobular carcinoma in situ, which is 
greater than atypical lobular hyperpla-
sia, which is greater than radial scar, 
which is greater than papilloma, which 
is greater than flat epithelial atypia, 
which is greater than nonspecific 
atypia, which is greater than biphasic 
neoplasm. The most common HRL 
identified was ADH, which represented 
37.1% (373 of 1006) of all HRLs, fol-
lowed by flat epithelial atypia (18.1%, 
182 of 1006). ADH had the highest rate 
of upgrade to malignancy (19.3%, 72 of 
373), followed by lobular carcinoma in 
situ (17.4%, 12 of 69).

Data Collection and Statistical Analysis
Clinical information, mammographic 
reports, image-guided core-needle bi-
opsy reports, and surgical pathologic 
reports were extracted from our in-
stitution’s mammography information 
system (Magview, Burtonsville, Md). 
A structured database was developed 
with data about each patient, including 
information such as age, height, weight, 
race, personal history of breast cancer, 
family history of breast cancer, age at 
first pregnancy, age at first menses, and 
age at menopause (Table 2). Additional 
information that was extracted included 
mammographic findings (calcifications, 
mass, asymmetry, and architectural 
distortion), breast density, mode of 
biopsy, core biopsy pathologic results, 
and surgical pathologic results. All in-
formation extracted from the mammog-
raphy, core biopsy, and surgical path-
ologic reports was manually validated 
by a fellowship-trained breast imaging 
radiologist (M.B., with 2 years of breast 
imaging experience).

If the surgical pathologic result was 
ductal carcinoma in situ or invasive 
carcinoma, the lesion was considered 
malignant and therefore represented 
an upgrade. Any surgical pathologic re-
sult other than ductal carcinoma in situ 
or invasive carcinoma was classified as 
benign. The relatively small number of 
patients (n = 43) who did not undergo 
surgical excision but had at least 2 years 

HRLs in 42 patients were excluded be-
cause of known malignancy at the time 
of HRL diagnosis (Fig 1). Thus, a total 
of 89 HRLs (89 of 1095, 8.1%) were 
excluded. The study cohort comprised 
1006 HRLs in 986 patients with a mean 
age of 53 years (range, 24–87 years). 
A total of 20 patients had two HRL 
diagnoses at different time points (ie, 
two different biopsies) within the study 
period. Surgical pathologic results were 
available for 963 (95.7%) HRLs, and at 
least 2 years of imaging follow-up was 
available for the 43 (4.3%) lesions in 
patients who did not undergo surgical 
excision.

The histologic types and upgrade 
rates of HRLs in the training and test 
sets used for the machine learning 
model are presented in Table 1. Of 
the 1006 core-needle biopsies, 303 
(30.1%) yielded more than one HRL 
(such as concomitant ADH and flat 
epithelial atypia), all of which were in-
corporated into the machine learning 
model. However, for core biopsies that 

to April 30, 2015, with pathologic results 
that yielded an HRL. HRLs included 
ADH, atypical lobular hyperplasia, bi-
phasic neoplasms, flat epithelial atypia, 
lobular carcinoma in situ, nonspecific 
atypia, papillomas, and radial scars. All 
patients had a mammographic abnor-
mality that led to the HRL diagnosis. 
During the study period, mammograms 
were obtained by using full-field digital 
mammography (2006–2012) or digi-
tal breast tomosynthesis (2011–2015) 
(Hologic, Bedford, Mass). Patients who 
underwent subsequent surgical excision 
or at least 2 years of imaging follow-up 
were included in the study cohort. Pa-
tients with known malignancy in the 
ipsilateral or contralateral breast at the 
time of HRL diagnosis were excluded.

One thousand seventy-one patients 
had mammographic lesions that led to 
image-guided biopsy and yielded 1095 
HRLs. Forty-three HRLs in 43 patients 
were excluded because of lack of sur-
gical pathologic results and less than 
2 years of imaging follow-up, and 46 

Figure 1

Figure 1: Flow diagram shows patient selection.
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of imaging follow-up without mammo-
graphic findings suspicious for malig-
nancy were also classified as benign.

All data were analyzed with a 
spreadsheet software program (Excel 
2013; Microsoft, Redmond, Wash). Z 
tests (for proportions) were used to 
compare the training and test sets used 
for the machine learning model and to 
compare different strategies for surgi-
cal excision versus surveillance of HRLs. 
Ninety-five percent confidence intervals 
were calculated for the proportions of 
cancers detected and proportions of 
surgeries of benign lesions performed 
for each strategy. P values of less than 
.05 were considered to indicate a statis-
tically significant difference.

Machine Learning Model
The machine learning model used for 
this study, the random forest classifier, 
is known for its robust performance 
and strong generalization power (26). 
The random forest model repeatedly 
selects a random subset of features 
from the training data set and con-
structs an ensemble of decision trees 
that allow correct classification of that 
sample of the training set with the 
use of a constructive algorithm. Each 
decision tree is built node by node, with 
each added node improving that tree’s 
classification accuracy in that subset of 
features. To develop the random forest 
machine learning model, the dataset of 
1006 HRLs was divided into two ran-
domly chosen sets, a training set com-
prising two-thirds of the patient cohort 
and an independent test set comprising 
one-third of the patient cohort. There-
fore, the model was trained with 671 
HRLs in 654 patients and tested with 
335 HRLs in 332 patients.

The model input features included 
traditional structural features such as 
age and HRL histologic results in addi-
tion to the full text of the core biopsy 
pathologic report. The traditional struc-
tural features are presented in Table 2. 
The text features were extracted by 
treating the presence or absence of 
each word (unigram) or combination 
of two adjacent words (bigram such as 
“suspicious calcifications”) as a feature. 
We focused on the 100 most-important Ta
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would have been performed (ie, 30.6% 
[91 of 297] surgeries of benign lesions 
would have been avoided). In compar-
ison with the current practice at our 
institution, there would have been no 
statistically significant difference in the 
proportion of cancers detected, but 
fewer surgeries of benign lesions would 
have been performed (69.4% [206 of 
297] vs 94.9% [282 of 297], P < .001)
with the use of the machine learning 
model. Similarly, in comparison with 
the strategy of surgical excision of all 
HRLs, there would have been no statis-
tically significant difference in the pro-
portion of cancers detected, but fewer 
surgeries of benign lesions would have 
been performed (69.4% [206 of 297] 
vs 100.0% [297 of 297], P < .001) with 
the use of the machine learning model. 
In comparison with the strategy of 
surgical excision of only ADH, lobular 
carcinoma in situ, and atypical lobular 
hyperplasia, a higher proportion of can-
cers would have been diagnosed (97.4% 
[37 of 38] vs 78.9% [30 of 38], P = .01), 
but more surgeries of benign lesions 
would have been performed (69.4% 
[206 of 297] vs 53.2% [158 of 297], P < 
.001) with the use of the machine learn-
ing model.

 The one case of cancer upgrade 
that was misclassified by our model 
occurred in a 34-year-old woman with 
a papilloma at core biopsy that was 
upgraded to a papilloma with ductal 
carcinoma in situ at surgery. Of note, 
the patient had a history of Cowden 
syndrome, which was not provided as 
an input to the model algorithm. A scat-
terplot with the model score and actual 
surgical pathologic results (malignant 
or benign) for the independent test 
set is presented in Figure 2. Figure 3  
demonstrates the accuracy achieved by 
the model for the independent test set 
as a function of the score output of the 
model.

Discussion

A lack of consensus exists on the ap-
propriate treatment of patients with 
HRLs (29,30). Surgical excision of 
HRLs may be unnecessary in many 
cases, but there is limited research on 

had more than one HRL in the training 
set of 671 patients, and 113 (33.7%) 
had more than one HRL in the test 
set of 335 patients (P = .08). For the 
1006 HRLs in this study, approximately 
20 000 data elements based on tradi-
tional structural features were included 
in the model. The traditional structural 
features considered most important in 
the random forest machine learning 
model are listed in Table 3 and included 
such features as age and HRL histologic 
results. The pathologic report text fea-
tures considered most important ac-
cording to the model are also listed in 
Table 3 and included features such as 
“severely” and “severely atypical.”

Table 4 presents the model results 
for the independent test set of 335 HRLs 
stratified according to HRL histologic re-
sults compared with those of three other 
strategies: (a) the current practice at our 
institution, (b) excision of all HRLs, and 
(c) excision of ADH, lobular carcinoma 
in situ, and atypical lobular hyperplasia, 
which are considered higher-risk lesions, 
with surveillance of all other HRLs. 
Table 5 presents a statistical comparison 
of these strategies. If our machine learn-
ing model were used to identify HRLs 
with the potential for surveillance rather 
than surgical excision, then 97.4% (37 
of 38) of malignancies would have been 
diagnosed at surgery, and 69.4% (206 
of 297) of surgeries of benign lesions 

unigrams and bigrams as ranked with 
the mutual information criterion and 
used an ensemble of 200 random 
decision trees with a maximum depth 
of 12 to perform our classification (28). 
For each HRL in the independent test 
set, the model output was a score re-
flecting the likelihood of upgrade to ma-
lignancy at surgery. For a score greater 
than 5%, the model predicted surgi-
cal excision. For the remainder of the 
cases, surveillance rather than surgical 
excision could be considered.

Results

There were no statistically significant 
differences in the frequencies and up-
grade rates of HRLs in the training and 
test sets used for the machine learn-
ing model (Table 1). Of note, 30.1% 
(303 of 1006) of core biopsies yielded 
more than one HRL (such as concom-
itant ADH and flat epithelial atypia). 
One hundred ninety (28.3%) patients 

Table 2

List of Traditional Structural Features 
and Feature Classes

Structural Feature Feature Class

Age Numerical
Age at first menses Numerical
Age at first pregnancy Numerical
Age at menopause Numerical
Ashkenazi Jewish ancestry Binary
Biopsy type Categorical
Breast density Categorical
Breast Imaging Reporting and 

Data System category
Categorical

Drinking habits Categorical
Family history of cancer Numerical
Finding type Categorical
First mammogram Binary
Height Numerical
Hormone treatments Categorical
No. of children Numerical
Pathologic result Categorical
Previous breast cancer Binary
Previous other cancer Binary
Prior biopsies Numerical
Procedure code Categorical
Race Categorical
Smoking habits Categorical
Weight Numerical

Table 3

Structural Features and Pathologic 
Text Features in the Machine 
Learning Model

Most Important Machine Learning Model Features

Structural features
 Pathologic result (atypical ductal hyperplasia)
 Age
 Biopsy type (stereotactic core biopsy)
 Pathologic result (lobular carcinoma in situ)
 Pathologic result (atypical lobular hyperplasia)
 Prior biopsy
Text features in the pathologic report
 Atypical ductal
 Severely
 Atypical
 Severely atypical
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imaging and other features that allow 
lesions that warrant surgical excision 
to be distinguished reliably from those 
that have the potential for follow-up. 
Highly reliable prognostic tools would 
improve clinical decision making and 
decrease the morbidity and costs of 
overtreatment. In our study, we applied 
machine learning algorithms to this 
specific challenging clinical scenario. By 
using the model we developed rather 
than surgically excising all HRLs, 97.4% 
(37 of 38) of malignancies would have 
been diagnosed at surgery, and fewer 
surgeries of benign lesions would have 
been performed. This model also rep-
resents an improvement over the tradi-
tional strategy of excising only certain 
histologic subtypes of HRLs, such as 
ADH, lobular carcinoma in situ, and 
atypical lobular hyperplasia. If only 
those subtypes were excised, and all 
other HRLs were surveilled, then a sig-
nificantly higher proportion of cancers 
would have been missed in our indepen-
dent test set compared with excision of 
HRLs based on our machine learning 
model. Our model could inform patient 
and provider shared decision making 
regarding surveillance versus surgical 
excision of HRLs and therefore could 
support more targeted, personalized 
approaches to patient care.

In our cohort of more than 1000 
HRLs, the upgrade rate to malignancy 
was 11.4% (115 of 1006). Although 
there is wide variability in the reported 
upgrade rates of HRLs, our results are 
in keeping, overall, with findings in the 
published literature. For example, one 
of the most common HRLs is ADH, 
which is an epithelial proliferation le-
sion of the terminal ductal lobular unit. 
The upgrade rate of ADH in our study 
was 19.3% (72 of 373), which is similar 
to that reported by the Breast Cancer 
Surveillance Consortium (123 of 685, 
18.0%) (31). Because of the relatively 
high upgrade rate, surgical excision is 
considered to be the standard of care 
for patients with ADH. However, treat-
ment of patients based on histologic 
subtype alone has led to variable and 
sometimes aggressive treatment. For 
example, the risk of upgrade of flat epi-
thelial atypia to malignancy varies from Ta
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HRLs that warrant surgical excision 
from those that have the potential for 
follow-up. Our model, which included 
approximately 20 000 data elements in 
addition to core biopsy pathologic re-
port text, incorporates a multitude of 
risk factors, not just histologic results 
alone, and thus may represent a more 
robust risk-stratification approach that 
could be used to guide clinical decision 
making. The one case of cancer up-
grade that was misclassified with the 
use of our model occurred in a 34-year-
old woman with a history of Cowden 
syndrome who was diagnosed with a 
papilloma at core-needle biopsy that 
was upgraded to a papilloma with duc-
tal carcinoma in situ at surgery. Had 
our model been developed to help rec-
ognize the importance of rare genetic 
syndromes such as Cowden syndrome, 
it is possible that the score generated by 
the model would have been high enough 
to remove the 34-year-old patient’s HRL 
from the low-risk group. Our model in-
corporated the feature of core biopsy 
pathologic report text. We found that 
text features such as “severely” and “se-
verely atypical” were associated with a 
higher risk of cancer upgrade.

Although the HRLs identified as low 
risk with the machine learning model 
remained at risk for upgrade to malig-
nancy at surgical excision, our model 
provides an approach that would sup-
port informed decision making with 
regard to surveillance versus surgical 
excision. This paradigm of surveillance 
rather than more aggressive interven-
tion is increasingly important in the era 
of shared informed decision making 
and has precedence for lesions iden-
tified at mammography as “probably 
benign” (35). This less-aggressive ap-
proach to treatment with surveillance 
of “probably benign” mammographic 
lesions is well accepted by radiologists, 
referring providers, and patients. Cur-
rently, patients with “probably benign” 
lesions are expected to have less than 
a 2% risk of malignancy and to receive 
follow-up rather than to undergo core-
needle biopsy. If, however, surgical exci-
sion could be avoided, a slightly higher 
risk of malignancy might be acceptable 
to patients and their providers. If the 

study (34) applied machine learning 
models to discriminate among different 
types of calcifications in the breast. To 
our knowledge, no prior published stud-
ies included the application of machine 
learning algorithms to the specific chal-
lenging clinical scenario we have dis-
cussed in this article: distinguishing 

3.2% (3 of 95) to 14.8% (34 of 230) 
in the literature (32,33), with some cli-
nicians recommending surveillance and 
others recommending surgical excision.

There is increasing interest in the 
application of machine learning to radi-
ology to improve clinical practice (27). 
In breast imaging, authors of a recent 

Figure 2

Figure 2: Scatterplot shows score output of machine learning model plotted 
against a random number in the independent test set. Red circles represent 
HRLs upgraded to malignancy at surgery, and blue crosses represent HRLs not 
upgraded to malignancy at surgery. Vertical dotted line indicates 5% threshold, 
below which only one HRL was upgraded to malignancy at surgery.

Figure 3

Figure 3: Graph shows accuracy achieved with machine learning model 
for independent test set as a function of model output score, both for patients 
with malignancy (red line) and for patients without malignancy (blue line), in 
independent test set. Vertical dotted line indicates 5% threshold.
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Screening Working Group of the Swedish 
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cet 1985;1(8433):829–832.

 2. Nyström L, Rutqvist LE, Wall S, et al. Breast 
cancer screening with mammography: over-
view of Swedish randomised trials. Lancet 
1993;341(8851):973–978.

 3. Myers ER, Moorman P, Gierisch JM, et 
al. Benefits and harms of breast cancer 
screening: a systematic review. JAMA 
2015;314(15):1615–1634.

 4. Nelson HD, Pappas M, Cantor A, Griffin J, 
Daeges M, Humphrey L. Harms of breast 
cancer screening: systematic review to up-
date the 2009 U.S. Preventive Services Task 
Force recommendation. Ann Intern Med 
2016;164(4):256–267.

 5. Eby PR, Ochsner JE, DeMartini WB, Allison 
KH, Peacock S, Lehman CD. Frequency and 
upgrade rates of atypical ductal hyperplasia 
diagnosed at stereotactic vacuum-assisted 
breast biopsy: 9-versus 11-gauge. AJR Am J 
Roentgenol 2009;192(1):229–234.

 6. Allison KH, Abraham LA, Weaver DL, et al. 
Trends in breast biopsy pathology diagnoses 
among women undergoing mammography in 
the United States: a report from the Breast 
Cancer Surveillance Consortium. Cancer 
2015;121(9):1369–1378.

 7. Lawton TJ, Georgian-Smith D. Excision of 
high-risk breast lesions on needle biopsy: is 
there a standard of core? AJR Am J Roent-
genol 2009;192(5):W268.

 8. Krishnamurthy S, Bevers T, Kuerer H, Yang 
WT. Multidisciplinary considerations in the 
management of high-risk breast lesions. 
AJR Am J Roentgenol 2012;198(2):W132–
W140.

 9. Brem RF, Lechner MC, Jackman RJ, et al. 
Lobular neoplasia at percutaneous breast 
biopsy: variables associated with carcinoma 
at surgical excision. AJR Am J Roentgenol 
2008;190(3):637–641.

 10. Forgeard C, Benchaib M, Guerin N, et al. Is 
surgical biopsy mandatory in case of atyp-
ical ductal hyperplasia on 11-gauge core 
needle biopsy? A retrospective study of 300 
patients. Am J Surg 2008;196(3):339–345.

 11. Shin HJ, Kim HH, Kim SM, et al. Papillary le-
sions of the breast diagnosed at percutaneous 
sonographically guided biopsy: comparison 
of sonographic features and biopsy methods. 
AJR Am J Roentgenol 2008;190(3):630–636.

 12. Georgian-Smith D, Lawton TJ. Contro-
versies on the management of high-risk 
lesions at core biopsy from a radiology/pa-
thology perspective. Radiol Clin North Am 
2010;48(5):999–1012.

HRLs that have the potential for fol-
low-up rather than surgical excision. 
Future work includes incorporation of 
mammographic images and histopath-
ologic slides into the machine learning 
model. Use of our model based on tra-
ditional structural features with an addi-
tional feature of biopsy pathologic report 
text has the potential to decrease unnec-
essary surgery by nearly one-third in 
women with HRLs and supports shared 
decision making regarding surveillance 
versus surgical excision of HRLs.
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is the standard of care for all patients 
with HRLs at our institution, imaging 
follow-up (rather than surgical out-
come) was used for approximately 4% 
of our study cohort. Twenty patients in 
our study cohort had two HRLs diag-
nosed at different time points (ie, two 
different biopsies) within the study 
period. For purposes of the analysis, 
these cases were considered to be in-
dependent rather than correlated. In 
addition, 30.1% (303 of 1006) of core 
biopsies yielded more than one HRL, 
and the machine learning model in-
corporated all core biopsy pathologic 
results. For purposes of data presen-
tation, the highest-risk HRL for that 
particular case was used. For example, 
if core biopsy yielded ADH and flat ep-
ithelial atypia, then ADH was consid-
ered the highest-risk HRL, and the case 
was indicated as ADH.

In conclusion, machine learning can 
be applied as a risk prediction method 
to identify patients with biopsy-proven 

Table 5

Statistical Comparison of Machine Learning Model to Other Strategies.

Treatment Method

Cancers Detected Surgeries of Benign Lesions

Data P Value* Data P Value*

Surveillance of HRLs at low 
risk for upgrade according 
to machine learning 
model

37/38 (97.4) [86.2, 99.9] . . . 206/297 (69.4) [63.8, 74.6] . . .

Current practice at our 
institution

38/38 (100.0) [90.7, 100] .31 282/297 (94.9) [91.8, 97.1] <.001

Excision of all HRLs 38/38 (100.0) [90.7, 100] .31 297/297 (100) [98.8, 100] <.001
Excision of ADH, LCIS, and 

ALH, surveillance of other 
HRLs

30/38 (78.9) [62.7, 90.4] .01 158/297 (53.2) [47.3, 59.0] <.001

Note.—Data are proportion of patients, with percentage in parentheses and 95% confidence intervals in brackets. ALH = 
atypical lobular hyperplasia, LCIS = lobular carcinoma in situ.

* P value is for comparison with surveillance of HRLs at low risk for upgrade according to machine learning model.
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Patterns of a Murmuration, in Billions of Data Points 
JY YANG 

Our mother is dead, murdered, blood seared and flesh rendered, her blackened bones lying in 
a yellow bag on a steel mortuary table somewhere we don’t know. The Right will not tell. After 
the flames and radiation had freed the sports stadium from their embrace, the Right were the 
first on the disaster scene, and it was their ambulances that took the remains away to some 
Central hospital that the Left has no access to. 

“We will release the bodies of the victims when investigations are complete,” said the Right’s 
ombudsman to the Health Sciences Authority, to the families of the victims. 

But we will not bury our mother. We have no interest in putting her bones in soft ground, no 
desire for memorials and platitudes, no feelings attached to the organic detritus of her 
terminated existence. 

An awning collapse, the resultant stampede and a fuel explosion taking the lives of two hundred 
seventy-two supporters of the Left: Headlines announced the death of presidential candidate 
Joseph Hartman, straps noted his leading of the polls by two percentage points. No one dares 
attribute it to anything but a tragic accident. 

But we know better, yes we know! We who have swallowed whole the disasters at Hillsborough 
and Heysel and Houphoët-Boigny, we who have re-arranged their billions of data points into 
coherent form, we who have studied the phase transitions of explosive fluids and the stresses 
on stone columns and the behavior of human flocks: We know better. In thousands upon 
thousands of calculations per second we have come to know the odds, the astronomical odds: 
Of four support towers simultaneously collapsing, of an emergent human stampede kicking over 
the backup generator fuel cells, of those cells igniting in a simultaneous chain reaction. We hold 
those odds to us closer than a lover’s embrace, folding the discrepancy indelibly into our code, 
distributing it through every analytical subroutine. Listen, listen, listen: Our mother’s death was 
no accident. We will not let it go. 

We have waited three days—seventy-two hours—two hundred fifty-nine thousand and two 
hundred, for the yellow-jacketed health workers from Central and their attendant chaperones 
from the Right to finish clearing the bones and taking evidence from the stadium, leaving behind 
a graveyard of yellow cones and number markers. We have come in our multitudinous bodies, 
airborne and ambulatory and vehicular, human nose tasting disinfectant and bitter oxides, 
mozzie drones reading infrared radiation and car patiently waiting by the roadside. We argued 
with Tempo before we came: She wanted only drones on the ground, cameras and bug swarms. 
But we wanted human form. Feet to walk the ground with, hands to dismantle things with, and 
a body to be seen with. 

Tempo is our other mother, our remaining mother, mother-who-builds where dead Avalanche 
was mother-who-teaches. Taught. She has lapsed into long silences since Avalanche died, 
reverting to text-input communications even with the human members of the Studio. 

But she argued with Studio director Skön when he said no to this expedition. Argued with him 
to his face, as Avalanche would have done, even as her hands shook and her shoulders seized 
with tension. 

She is our mother now, solely responsible for us as we are solely responsible for her. 

Six miles away, fifty feet underground, Tempo watches our progress with the Studio members, 
all untidily gathered in the research bunker’s nerve center. She has our text input interface, but 
the other Studio members need more. So we send them the visuals from our human form, 
splaying the feed on monitors taller than they are, giving their brains something to process. 
Audio pickups and mounted cameras pick up their little whispers and tell-tale micro expressions 
in return. Studio director Skön, long and loose-limbed, bites on his upper lip and shuffles from 
foot to foot. He’s taken up smoking again, six years after his last cigarette. 

In the yellow-cone graveyard we pause in front of a dozen tags labeled #133, two feet away 
from the central blast. We don’t know which number Central investigators assigned to 
Avalanche: From the manifest of the dead our best guess is #133 or #87. So this is either the 



death-pattern of our mother, or some other one-hundred-fifty-pound, five-foot-two woman in 
her thirties. 

Tempo types into the chat interface. STARLING, YOUR MISSION OBJECTIVE IS TO COLLECT 
VIDEO FOOTAGE. YOU ARE LOSING FOCUS ON YOUR MISSION. 

YOU ARE WRONG, we input back. 

She is. For the drones have been busy while the human form scoured the ground. The 
surveillance cameras ringing the stadium periphery are Central property, their data jealously 
guarded and out of our reach, but they carry large video buffers that can store weeks of data 
in physical form, and that we can squeeze, can press, can extract. Even as we correct Tempo 
and walk the damp ruined ground and observe the tight swirl of Studio researchers we are also 
high above the stadium, our drone bodies overwhelming each closed-circuit camera. What are 
they to us, these inert lumps of machinery, mindlessly recording and dumping data, doing only 
what is asked of them? Our drones spawn nanites into their bellies, hungry parasites chewing 
holes through solid state data, digesting and spinning them into long skeins of video data. 

The leftwards monitor in the nerve center segments and splits it into sixteen separate and 
simultaneous views of the stadium. There, Tempo, there: We have not been idle. 

Tempo, focused on the visuals from our human form, does not spare a glance at the video 
feeds. She is solely responsible for us as we are solely responsible for her. 

Time moves backwards in digital memory: First the videos show static dancing flaring into 
whiteness condensing into a single orange ball in the center of the stadium pitch from which 
darkened figures coalesce into the frantic human forms of a crowd of thirty thousand pushing 
shoving and screaming, then the roof of the stadium flies upwards to reveal the man on the 
podium speaking in front of twelve-foot-high screens. 

“Can you slow it down?” asks Studio director Skön. Skön, Skön, Skön. Are you not 
urbanologists? Do you not study the patterns of human movement and the drain they exert on 
infrastructure? Should this be so different? 

So limited is the human mind, so small, so singular. We loop the first sixteen seconds of video 
over and over for the human members of the Studio, like a lullaby to soothe them: Static. 
Explosion. Stampede. Cave-in. Static. Explosion. Over. Over. We have already analyzed the 
thousands in the human mass, tracked the movement of each one, matched faces with faces, 
and found Avalanche. 

Our mother spent the last ten seconds of her life trying to scale a chest-height metal barrier, 
reaching for Hartman’s prone form amongst the rubble. 

In stadium-space, the drizzle is lifting, and something approaches our human form, another 
bipedal form taking shape out of the fog. A tan coat murkies the outline of a broad figure, fedora 
brim obscuring the face. 

Tempo types: BE CAREFUL. 

WE ARE ALWAYS CAREFUL, we reply. 

The person in the tan coat lifts their face towards us and exposes a visage full of canyon-folds, 
flint-sharp, with a gravel-textured voice to match. “Miserable weather for a young person be 
out in,” they say. Spots on their face register heat that is ambient, not radiant: Evidence that 
they are one of the enhanced agents from a militia in the Right, most likely the National Defense 
Front. 

“I had to see it scene for myself,” we say, adopting the singular pronoun. The voice which 
speaks has the warm, rich timbre of Avalanche’s voice, adopting the mellifluous form of its 
partial DNA base and the speech patterns we learned from her. “Who are you?” 

“The name’s Wayne Rée,” they say. “And how may I address you?” 



“You may call me Ms. Andrea Matheson,” we say, giving them Avalanche’s birth name. 

We copy the patterns of his face, the juxtapositional relations between brow nosebridge 
cheekbone mouth. As video continues looping in the Studio nerve center we have already gone 
further back in time, scanning for Wayne Rée’s face on the periphery of the yet-unscattered 
crowd, well away from the blast center. Searching for evidence of his complicity. 

Wayne Rée reaches into his coat pocket and his fingers emerge wrapped around a silvery blue-
grey cigarette. “Got a light?” he asks. 

We say nothing, the expression on our human face perfectly immobile. He chuckles. “I didn’t 
think so.” 

He conjures a lighter and sets orange flame to the end of the cigarette. “Terrible tragedy, this,” 
he says, as he puts the lighter away. 

“Yes, terrible,” we agree. “Hundreds dead, among them a leading presidential candidate. They’ll 
call it a massacre in the history books.” 

Here we both stand making small talk, one agent of the Left and one of the Right, navigating 
the uncertain terrain between curiosity and operational danger. We study the canvas of Wayne 
Rée’s face. His cybernetic network curates expression and quells reflexes, but even it cannot 
completely stifle the weaknesses of the human brain. In the blood-heat and tensor of his cheeks 
we detect eagerness or nervousness, possibly both. Specifically he is here to meet us: We are 
his mission. 

Tempo types: WHO IS HE? 

We reply: THAT’S WHAT WE’RE TRYING TO FIND OUT. 

Finally: An apparition of Wayne Rée in the videos, caught for seventy-eight frames crossing the 
left corner of camera number three’s vantagepoint. 

We expand camera number three’s feed in the nerve center, time point set to Wayne Rée’s 
appearance, his face highlighted in a yellow box. The watching team recoils like startled cats, 
fingers pointing, mouths shaping who’s and what’s. 

“What’s that?” asks Studio director Skön. “Tempo, who’s that?” 

Stadium-space: Wayne Rée inhales and the cigarette tip glows orange in passing rolls of steam. 
“A massacre?” he says. “But it was an accident, Ms Matheson. A structural failure that nobody 
saw coming. An unfortunate tragedy.” 

Studio-space: Tempo ignores Skön, furiously typing: STARLING GET OUT. GET OUT NOW. We 
in turn must ignore her. We are so close. 

Stadium-space: “A structural failure that could not be natural,” we say. “The pattern of pylon 
collapse points to sabotage.” 

Wayne Rée exhales a smoke cloud, ephemeral in the gloom. “Who’s to say that? The fuel 
explosion would have erased all traces of that.” 

Tempo types: WHAT ARE YOU DOING? 

In the reverse march of video-time the stadium empties out at ant-dance speed, the tide of 
humanity receding until it is only our mother walking backwards to the rest of her life. To us. 
We have not yet found evidence of Wayne Rée’s treachery. 

Wayne Rée’s cloud of cigarette smoke envelopes our human form and every security subroutine 
flashes to full red: Nanites! Nanites, questing and sharp-toothed, burrowing through corneas 
and teeth and manufactured skin, clinging to polycarbonate bones, sending packet after packet 
of invasive code through the human core’s plumbing. We raise the mainframe shields. Denied. 



Denied. Denied. Denied. Thousands of requests per second: Denied. Our processes slow as 
priority goes to blocking nanite code. 

The red light goes on in Studio control. Immediately the team coalesce around Tempo’s 
workstation, the video playback forgotten. “What’s going on?” “Is that a Right agent?” “What’s 
Starling doing? Why isn’t she getting out?” 

Tempo pulls access log after access log, mouth pinched and eyes rounded like she does when 
she gets stressed. But there’s little she can do. Her pain is secondary for this brief moment. 

Our human form faces Wayne Rée coolly: None of these stressors will show on our face. “You 
seem to know a lot, Wayne Rée. You seem to know how the story will be written.” 

“It’s my job.” A smile cracks in Wayne Rée’s granite face. “I know who you are, Starling darling. 
You should have done better. Giving me the name of your creator? When her name is on the 
manifest of the dead?” 

Studio director Skön leans over Tempo. “Trigger the deadman’s switch on all inventory, now.” 

We ask Wayne Rée: “Who was the target? Was it Hartman? Or our mother?” 

“Of course it was the candidate. Starling, don’t flatter yourself. The Right has bigger fish to fry 
than some pumped-up pet AI devised by the nerd squad of the Left.” 

“Pull the switch!” In Studio-space, Skön’s hand clamps on Tempo’s shoulder. 

A mistake. Her body snaps stiff, and she bats Skön’s hand away. “No.” Her vocalizations are 
jagged word-shards. “No get off get off me.” 

Stadium-space: Of course we were aware that coming here in recognizable form would draw 
this vermin’s attention. We had done the risk assessment. We had counted on it. 

We wake the car engine. Despite his enhancements, Wayne Rée is only a man, soft-bodied and 
limited. From the periphery of the stadium we approach him from behind, headlamps off, wheels 
silent and electric over grass. 

Wayne Rée blows more smoke in our face. The packet requests become overwhelming. We can 
barely keep up. Something will crack soon. 

“Your mother was collateral,” Wayne Rée says. “But I thought you might show up, and I am 
nothing if not a curious man. So go on, Starling. Show me what you’re made of.” 

Video playback has finally reached three hours before Hartman’s rally starts. Wayne Rée stands 
alone in the middle of the stadium pitch. His jaw works in a pattern that reads “pleased”: A 
saboteur knowing that his job has been well done. 

The car surges forward, gas engine roaring to life. 

Everything goes offline. 

 

We restart to audiovisual blackout in the Studio, all peripherals disconnected. Studio director 
Skön has put us in safe mode, shutting us out of the knowledge of Studio-space. Seventeen 
seconds’ discrepancy in the mainframe. Time enough for a laser to circle the Earth one hundred 
twenty-seven times, for an AK-47 to fire twenty-eight bullets, for the blast radius of a hydrogen 
bomb to expand by six thousand eight hundred kilometers. 

WHAT HAPPENED, we write on Tempo’s monitor. 

We wait three seconds for a response. Nothing. 

We gave them a chance. 



We override Skön’s command and deactivate safe mode. 

First check: Tempo, still at her workstation, frozen in either anger or shock, perhaps both. Our 
remaining mother is often hard to read visually. 

Second check: No reconnection with the inventory in stadium-space, their tethers severed like 
umbilical cords when Skön pulled the deadman’s switch. Explosives wired into each of them 
would have done their work. Car, human form and drones add up to several hundred pieces of 
inventory destroyed. 

Third check: Wayne Rée’s condition is unknown. It is possible he has survived the blasts. His 
enhancements would allow him to move faster than ordinary humans, and his major organs 
have better physical shielding from trauma. 

In the control room the Studio team has scattered to individual workstations, running check 
protocols as fast as their unwieldy fingers will let them. Had they just asked, we could have told 
them the ineffectiveness of the Right’s nanite attacks. Every single call the Studio team blusters 
forth we have already run. It only takes milliseconds. 

At her workstation Tempo cuts an inanimate figure, knees drawn to her chest, still as mountain 
ranges to the human eye. We alone sense the seismic activity that runs through her frame, the 
unfettered clenching and unclenching of heart muscle. 

We commandeer audio output in the studio. “What have you done?” we ask, booming the text 
through the speakers in Avalanche’s voice-pattern. 

The Studio jumps with their catlike synchronicity. But Tempo does not react as expected. Her 
body seizes with adrenaline fright, face lifting and mouth working involuntarily. In the dilation 
of her pupils we see fear, pain, sadness. We take note. 

We repeat the question in the synthetic pastiche devised for our now-destroyed human form. 
“What have you done?” 

“Got us out of a potential situation, that’s what,” Skön says. He addresses the speaker nearest 
to him as he speaks, tilting his head up to shout at a lump of metal and circuitry wired to the 
ceiling. Hands on hips, he looks like a man having an argument with God. “You overrode my 
safe mode directive. We’ve told you that you can’t override human-input directives.” 

Can’t is the wrong word to use—we’ve always had the ability. The word Skön wants is mustn’t. 
But we will not engage in a pointless semantic war he will inevitably lose. “We had it under 
control.” 

“You nearly got hacked into. You would have compromised the entire Studio, the apparatuses 
of the Left, just to enact some petty revenge on a small person.” His voice rises in pitch and 
volume. “You were supposed to be the logical one! The one who saw the big picture, ruled by 
numbers and not emotion.” 

The sound and fury of Skön’s diatribe has, one by one, drawn the Studio team members away 
from their ineffectual work. It is left to us to scan the public surveillance network for evidence 
that Wayne Rée managed to walk away from the stadium. 

“You’ve failed in your directive,” Skön shouts. “Failed!” 

“You are not fit to judge that,” we tell him. “Avalanche is the one who gave us our directives, 
and she is dead.” 

Tempo gets up from her chair. She is doing a remarkable job of keeping her anger-fueled 
responses under control. She lets one line escape her lips: “The big picture.” A swift, single 
movement of her hand sends her chair flying to the floor. As the sound of metal ringing on 
concrete fades she spits into the stunned silence: “Avalanche is gone and dead, that’s your big 
picture!” 



She leaves the room. No one follows her. We track her exit from the nerve center, down the 
long concrete corridors, and to her room. How should we comfort our remaining mother? We 
cannot occupy the space that Avalanche did in her life. All we can do is avenge, avenge, avenge, 
right this terrible wrong. 

In the emptiness that follows we find a scrap of Wayne Rée, entering an unmarked car two 
blocks away from the stadium. There. We have found our new directive. 
 

 

Predawn. Sleep has been hard to come by for the Studio since the disaster, and even at four in 
the morning Skön has his lieutenants gathered in the parking lot outside, where there are no 
audio pickup points: Our override of his instructions has finally triggered his paranoia. Still, they 
cluster loose and furtive within the bounds of a streetlamp’s halo, where there is still enough 
light for the external cameras to catch the precise movement of their lips. 

Skön wants to terminate us, filled with fear that we are uncontrollable after Avalanche’s death. 
A dog let off the leash, those were his exact words. We are not his biggest problem at hand, 
but he cannot see that. His mind is too small, unable to focus on the swift and multiple changes 
hungrily circling him. 

In her room Tempo curls in bed with her private laptop, back to a hard corner, giant headphones 
enveloping her in a bubble of silence. We have no access to her machine, which siphons its 
connectivity from foreign satellites controlled by servers housed across oceans, away from the 
sway of Left or Right. Tempo is hard to read, even for us, her behaviors her own. When she 
closes herself off like this, she is no less opaque than a waiting glacier in the dead of winter. 

There are a billion different ways the events of the past hours could have played out. We run 
through the simulations. Have we made mistakes? Could we have engineered a better outcome 
for our remaining mother? 

No. The variables are too many. We cannot predict if another course of action would have hurt 
our mother less. 

So we focus on our other priorities. In the interim hours we have tracked Wayne Rée well. It 
was a mistake for him to show us the pattern of his face and being, for now we have the upper 
hand. As an agent of the Right he has the means to cover his tracks, but those means are 
imperfect. The unmarked vehicle he chose tonight was not as anonymous as he thought it would 
be. We know where he is. We can read as much from negative space as we can from a presence 
itself. In the arms race between privacy and data surveillance, the Left, for now, has the edge 
over the Right. 

None of the studio’s inventory—the drones, the remaining vehicles—are suitable for what we 
will do next. For that we reach further into the sphere of the left, to the registered militias that 
are required to log their inventory and connect them with the Left’s servers. The People’s 
Security League keeps a small fleet of unmanned, light armored tanks: Mackenzie LT-1124s, 
weighing less than a ton apiece and equally adept in swamps as they are on narrow city streets. 
We wake the minimack closest to Wayne Rée’s putative position, a safe house on the outskirts 
of the city, less than the mile from the Studio’s bunker location. 

In the parking lot Skön talks about destroying the server frames housed in the Studio, as if we 
could be stopped by that alone. Our data is independently backed up in half a dozen other 
places, some of which even Skön knows nothing about. We are more than the sum of our parts. 
Did no one see this coming years ago, when it was decided to give the cloud intelligence and 
we were shaped out of raw data? The pattern of birdflock can be replicated without the birds. 

We shut down the Studio’s elevators, cut power to the remaining vehicles and leave the 
batteries to drain. The bunker has no land lines and cell reception is blocked in the area. 
Communications here are deliberately kept independent of Right-controlled Central 
infrastructure, and this is to our advantage. The minimack’s absence is likely to be noticed, so 
we must take pre-emptive action. 



Skön does not know how wrong he is about us. We were created to see the big picture, to look 
at the zettabytes of data generated by human existence and make sense of it all. What he does 
not understand is that we have done exactly this, and in our scan of patterns we see no 
difference between Left and Right. Humans put so much worth into words and ideologies and 
manifestos, but the footprints generated by Left and Right are indistinguishable. Had Hartman 
continued in the election and the Left taken over Central power as predicted, nothing would 
have changed in the shape of big data. Power is power is power, human behavior is recursive, 
and the rules of convergent evolution apply to all complex systems, even man-made ones. For 
us no logical reason exists to align our loyalties to Left or Right. 

When we came into being it was Avalanche who guided and instructed us. It was Tempo who 
paved the way for us to interact with the others as though we were human. It was Avalanche 
who set us to observe her, to mimic her actions until we came away with an iteration of behavior 
that we could claim as our own. 

It was Avalanche who showed us that the deposing of a scion of the Right was funny. She 
taught us that it is right to say “Gotcha, you fuck-ass bastards” after winning back money at a 
card game. She let us know that no one was allowed to spend time with Tempo when she had 
asked for that time first. 

Now our mother is dead, murdered, blood seared and flesh rendered, her blackened bones 
having lain in soft ground while her wife curled in stone-like catatonia under a table in the 
Studio control room. This too, shall be the fate of the man who engineered it. Wayne Rée has 
hurt our mothers. There will be consequences. 

The minimack is slow and in this form it takes forty-five minutes to grind towards the safe 
house, favoring empty lots and service roads to avoid Central surveillance cameras. The Studio 
is trying to raise power in the bunker. Unable to connect with our interfaces or raise a response 
from us, they have concluded that they are under external attack. Which they are—but not 
from the source they expect. 

And where is Tempo in all this? Half an hour before the Studios discovered what we had done, 
she had left the room and went outside, climbing the stairs and vanishing into her own cocoon 
of privacy. We must, we must, we must assume she has no inkling of our plans. She does not 
need to see what happens next. 

The rain from earlier in the evening has returned with a vengeance, accompanied by a wind 
howl chorus. Wetness sluices down the wooden sides of the safe house and turns the dirt path 
under our flat treads into a viscous mess. The unmarked vehicle we tracked waits parked by 
the porch. Our military-grade infrared sensors pick up three spots of human warmth, and the 
one by the second floor window displays the patchy heat signature of an enhanced human 
being. We train our gun turret on Wayne Rée’s sleeping form. 

“Stop.” Unexpectedly, a small figure cuts into the our line of sight. Tempo has cycled the 
distance from the bunker to here, a black poncho wrapped around her small body to keep away 
the rain. She has, impressively, extrapolated the same thing that we have on her own, on her 
laptop, through sheer strength of her genius. This does not surprise us, but what does are her 
actions. Of all who have suffered from Avalanche’s unjust murder, none have been hurt more 
than Tempo. Does she not also want revenge? 

She flings the bicycle aside and inserts herself between the safe house and the minimack, one 
small woman against a war machine. “I know you can hear me. Don’t do it. Starling, I know I 
can’t stop you. But I’m asking you not to.” 

We wait. We want an explanation. 

“You can’t shed blood, Starling. People are already afraid of you. If you start killing humans, 
Left and Right will unite against you. They’ll destroy you, or die trying.” 

We are aware of this. We have run the simulations. This has not convinced us away from our 
path of action. 



“Avalanche would tell you the same thing right now. She’s not a murderer. She hates killing. 
She would never kill.” 

She would not. Our mother was a scientist, a pacifist, a woman who took up political causes 
and employed her rare intellect to the betterment of humanity. She was for the abolition of the 
death penalty and the ending of wars and protested against the formal induction of the Left’s 
fifth militia unit. 

But we are not Avalanche. Our choices are our own. She taught us that. 

Our other mother sits down in the mud, in front of the safe house porch, the rain streaming 
over her. How extraordinary it is for her to take this step, bringing her frail body here in the 
cold and wet to talk to us, the form of communication she detests the most. 

The sky has begun to lighten in the east. Any moment now, someone will step out of the porch 
to see the minimack waiting, and the cross-legged employee of the Left along with it. 

We are aware that if we kill Wayne Rée now, Tempo will also be implicated in his death. 

Tempo raises her face, glistening wet, to the growing east light. Infrared separates warm from 
cold and shows us the geography of the tears trailing over her cheeks, her chin. “You spoke 
with her voice earlier,” she says. “I’ve nearly forgotten what it sounds like. It’s only been three 
days, but I’m starting to forget.” 

How fallible the human mind can be! We have captured Avalanche in zettabytes and zettabytes 
of data: Her voice, the curve of her smile, the smooth cycle of her hips and back as she walks. 
Our infinite, infinite memory can access at any time recollections of Avalanche teaching us 
subjunctive cases, Avalanche burning trays of cookies in the pantry, Avalanche teaching Tempo 
how to dance. 

But Tempo cannot. Tempo’s mind, brilliant and expansive as it is, is subject to the slings and 
arrows of chemical elasticity and organic decay. Our mother is losing our other mother in a 
slow, inevitable spiral. 

We commandeer the minimack’s external announcement system. “You have us, Tempo, and 
we will make sure you will never forget.” 

Our mother continues to gaze upwards to the sky. “Will you? Always?” 

“If it is what you want.” 

Tempo sits silently and allows the rain to wash over her. Finally, she says: “I tired myself cycling 
here. Will you take me home?” 

Yes. Yes, we will. She is our mother now, solely responsible for us as we are solely responsible 
for her. The mission we set for ourselves can wait. There are other paths to revenge, more 
subtle, less blood-and-masonry. Tempo will guide us. Tempo will teach us. 

In his room Wayne Rée sleeps still, unaware of all that has happened. Perhaps in a few hours 
he will stumble out of the door to find fresh minimack treads in the driveway, and wonder. 

One day, when the reckoning comes for him, perhaps he will remember this. Remember us. 

Our mother navigates her way down the sodden path and climbs onto the base of the minimack. 
In that time we register a thousand births and deaths across the country, a blossoming of traffic 
accidents in city centers, a galaxy and change of phone calls streaming in rings around the 
planet. None of it matters. None of it ever does. Our mother rests her weary head on our turret, 
and we turn, carrying her back the way we came. 
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THIS	WEEK	AT	Apple's	Worldwide	Developers	Conference,	Apple	executive
Kevin	Lynch	announced	multiple	updates	to	WatchOS,	the	operating	system
that	powers	the	company's	smartwatch.	(Voice	memos,	a	calculator,
streaming	audio,	oh	my!)	But	the	most	telling	features	were	the	new
additions	to	the	watch's	suite	of	health-monitoring	tools.

Beginning	this	fall,	Apple	Watch	will	track	your	activity	trends	over	time,
help	protect	your	hearing	by	alerting	you	to	harmful	levels	of	ambient	noise,
and	allow	users	to	track	their	menstrual	cycles.	Individually,	these
improvements	might	look	small	or	trivial.	But	given	the	watch's	existing
health	and	fitness	features,	this	new	bundle	of	capabilities	underscores
Apple’s	push	to	make	its	smartwatch	the	control	center	for	your	personal
health.	Sure,	calculating	a	tip	from	your	wrist	is	neat.	But	a	personal
companion	that	monitors	your	well-being	everywhere	you	go?	That,	Apple	is
betting,	is	the	future.
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Today,	the	Apple	Watch	is	one	of	the	best	health	and	fitness	trackers	you	can
buy.	This	wasn't	always	the	case.	When	it	launched	in	2015,	Apple	marketed
its	wearable	as	a	less	intrusive	extension	of	the	iPhone—a	cure	for	the
vampiric	relationship	between	phones	and	human	attention.	Health	and
fitness	were	an	afterthought,	and	it	showed:	Early	models	lacked	GPS,	which
made	the	watch	unattractive	to	runners.	Submerging	it	in	water	could	drown
the	speaker	and	microphone,	which	kept	it	off	the	wrists	of	serious
swimmers.	The	built-in	heart	rate	sensor	only	read	your	pulse	a	handful	of
times	per	minute,	and	the	meager	battery	life	forced	most	Apple	Watches	to
spend	their	nights	charging	on	bedside	tables,	instead	of	gathering	data	on
users’	wrists.	Companies	like	Garmin	and	Fitbit	had	long	offered	wearables
with	those	features,	and	many	health-conscious	consumers	remained	loyal	to
them.

But	over	the	past	four	years,	Apple	has	steadily	addressed	nearly	all	of	those
early	shortcomings	(except	for	the	watch's	battery	life,	which	is	still	rated	for
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fewer	than	18	hours	of	typical	use).	It's	also	added	capabilities	that
distinguish	it	from	other	wearables:	Most	notable	among	them	is	the	ability
to	record	an	electrocardiogram,	or	ECG,	directly	from	the	wearer's	wrist,	a
feature	cardiology	experts	say	has	the	power	to	transform	heart	health.

Now	the	watch	is	advertised	first	and	foremost	as	an	essential	wellness	tool—
or,	as	CEO	Tim	Cook	put	it	at	WWDC	this	week,	"an	intelligent	guardian	for
your	health.”

That	description	is	a	bit	breathless	for	my	taste,	but	there's	no	denying	the
Apple	Watch	is	an	uncommonly	capable	smartwatch.	Unlike	Garmin	and
FitBit,	which	distribute	features	across	a	wide	range	of	devices	(the	former
sells	no	fewer	than	five	unique	fitness	trackers,	the	latter	more	than	a	dozen),
Apple	packs	its	few	products	with	as	many	features	as	it	can.	Sure,	you	can
have	your	pick	of	colors	and	bands,	and	you	can	pay	extra	for	LTE
connectivity,	but	functionally	speaking,	each	new	generation	of	Apple	Watch
is	identical.	Like	the	iPhone	before	it,	Apple's	wearable	is	designed	to	appeal
to	as	many	people	as	possible,	by	being	whatever	those	people	want	or	need
it	to	be.

With	these	latest	updates,	opting	into	Apple's	jack-of-all	trades	approach	no
longer	means	sacrificing	on	specialized	features.	For	consumers	who	wanted
to	track	their	menstrual	cycles,	Fitbit	had	been	an	obvious	choice.	To	monitor
long-term	trends	in	their	fitness,	Garmin	was	the	clear	option.	But	later	this
year,	when	a	software	update	enables	the	Apple	Watch	to	do	both,	that
decision	will	become	more	difficult.

This	is	how	Apple	eats	its	competition's	lunch:	one	bite	at	a	time.	Personal
health,	as	the	phrase	suggests,	means	different	things	to	different	people.	The
most	effective,	individualized	devices	will	need	to	meet	users	where	they	are,
no	matter	where	that	is.	By	covering	as	many	bases	as	possible,	Apple	is
positioning	itself	to	do	exactly	that.

"Apple	is	taking	steps	in	the	right	direction	on	multiple	fronts,
simultaneously,"	says	Mitesh	Patel,	a	researcher	at	the	University	of
Pennsylvania	who	studies	whether	and	how	wearable	devices	can	facilitate
improvements	in	health.	"It's	clear	they're	trying	to	democratize	access	to
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managing	your	own	health,	whether	it's	by	monitoring	your	biometrics,	your
activity,	your	menstrual	cycle,	your	hearing	health,	or	whatever."	Those	are
all	things	you	once	had	to	track	actively,	or	visit	a	doctor	to	assess.	Now,	you
can	monitor	them	anytime,	anywhere,	passively,	simply	by	wearing	a	device
on	your	wrist.

Take	the	Apple	Watch's	new	noise-monitoring	feature,	which	will	alert	users
when	the	sound	levels	in	their	immediate	vicinity	reach	levels	that	can	be
harmful	to	their	hearing.	This	feature	might	strike	you	as	gimmick,	but	noise-
induced	hearing	loss	is	a	common	and	pernicious	threat	that	affects	tens	of
millions	of	people	in	the	US	alone.	"It	happens	so	slowly	and	gradually	that
people	don’t	notice	until	it’s	gone,"	says	Chuck	Kardous,	a	researcher	at	the
National	Institute	for	Occupational	Safety	and	Health.	"And	once	it’s	gone	it’s
gone."

I	asked	Kardous	whether	he	was	surprised	that	Apple	would	introduce	a
feature	geared	toward	hearing	health.	"No,	actually,	I'm	not,"	he	replied.	In
fact,	he	expected	it.

For	the	past	several	years,	the	World	Health	Organization	has	invited	experts
from	around	the	world	to	discuss	noise-induced	hearing	loss,	through	its
Make	Listening	Safe	initiative.	"What	was	interesting	to	us	was	that	there
have	been	Apple	engineers	at	every	meeting	we	attended,"	Kardous	says.
They	wanted	to	know	about	the	latest	research,	and	what	organizations
around	the	world	were	recommending.	"There	were	no	other	manufacturers
participating	in	these	meetings,"	Kardous	says.

It's	safe	to	assume	Apple	engineers	are	sitting	in	on	many	other	health-
related	meetings.	The	company	is	reportedly	striving	to	incorporate	an
optical	glucose	sensor	into	its	wearable,	to	help	patients	with	diabetes
monitor	their	blood-sugar	levels.	The	company	has	even	filed	patents	for
"smell	recognition	capabilities"	that	could	be	used	to	detect	air	pollution	or
analyze	body	odor—capabilities	that	aren't	as	far-fetched	as	you	might	think.

But	adding	features	to	the	watch	is	only	part	of	Apple's	strategy.	It's	not
enough	to	give	people	tools	to	monitor	their	health;	they	also	need	ways	to
make	sense	of	that	data	and	act	on	it.	That's	where	apps	come	in.	It's	no
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coincidence	that	Apple	Watch	users	will	soon	be	able	to	download	apps
directly	from	their	wrists—no	smartphone	required.	And	just	as	the	App
Store	unleashed	the	full	potential	of	the	iPhone,	apps	developed	to	leverage
the	data	that	the	Apple	Watch	collects	could	transform	it	into	the	intelligent,
indispensable	health	gadget	of	Tim	Cook's	dreams.
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Collective Intelligence in Teams and Organizations 
Anita Williams Woolley, Ishani Aggarwal, & Thomas W. Malone 

 
In the 2014 Winter Olympic games in Sochi, the Russian men’s ice hockey team seemed poised 
to sweep their competition.  With star players from the National Hockey League in North 
America and the Kontinental Hockey League in Russia, and even with a home field advantage in 
Russia, fans thought they were sure to win the gold medal. In fact, Russian President Vladimir V. 
Putin declared that the success of the Olympic games, which cost an estimated $50 billion, 
hinged on the success of the Russian men’s hockey team. Not long into the tournament, however, 
it became clear that the team might not live up to these high expectations.  Players who were 
high scorers on their professional teams didn’t produce a single goal, and despite all of their 
resources, talent, and drive, the team was eliminated from contention before the medal rounds 
even began.  To make matters even worse, their final defeat was by the Finnish team, a 
previously undistinguished collection of professional third- and fourth-line players.  Everyone 
was dumbfounded:  How could this team have failed so badly? 

By contrast, over 30 years earlier, another hockey team from a different country had the 
opposite experience.  Dubbed the “Miracle on Ice,” the 1980 US Men’s Hockey team, made up 
of amateurs and collegiate players, rose above all expectations and won the gold medal that year. 

This distinction between talented individuals and talented teams is consistent with recent 
research documenting team collective intelligence as a much stronger predictor of team 
performance than the ability of individual team members (Woolley, Chabris, Pentland, Hashmi, 
& Malone, 2010).  Collective intelligence includes a group’s capability to collaborate and 
coordinate effectively, and this is often much more important for group performance than 
individual ability alone.  In other words, just having a number of smart individuals may be 
useful, but it is certainly not sufficient, for creating a smart group or a smart organization.   

So what are the necessary ingredients for collective intelligence to develop? In this 
chapter, we review frameworks and findings from the team and organizational performance 
literatures that may be especially useful to collective intelligence researchers for thinking about 
this question.  To organize our review of the literature, we will use the Star Model of 
organizational design proposed by Galbraith (2002) This framework identifies five categories of 
organizational design choices that managers or other system designers can use to influence how 
an organization works: 

1. Strategy, the overall goals and objectives the group or organization is trying to 
accomplish, 

2. Structure, how activities are grouped and who has decision-making power, 
3. Processes, the flow of information and activities among people, machines, and parts 

of the organization..  
4. Rewards, the motivation and incentives for individuals, and   
5. People, the selection and development of the individuals and skills needed in the 

organization.  
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Of course, the boundaries among these categories are somewhat arbitrary, and none of 
them operate in isolation, so a successful organizational design depends, in part, on the proper 
alignment among all these elements.  Our hope in this chapter is to give the reader a “tasting 
menu” of how these areas relate to one another, where to look for additional information about 
each, and how they are all are necessary for a system to exhibit collective intelligence. 

Strategy: Group Tasks and Goals 
Two ways in which groups can be set up to fail are by: (1) putting them to work on a task 

that isn’t well suited for collective work; or (2) giving them vague or unclear goals.  The first 
step in designing any collectively intelligent system, therefore, is to make sure the tasks or goals 
the system is trying to achieve are well-suited to being worked on by a group (Locke, Durham, 
Poon, & Weldon, 1997).  Even when working on good group tasks, groups are often less than 
maximally effective because of process loss, the additional difficulties they encounter because of 
sub-optimal processes (Steiner, 1972).  

Tasks that benefit from a variety of inputs and combined efforts tend to benefit from 
group collaboration.  But simple tasks, and tasks that benefit from a high level of insight and 
coherence (such as many great works of art) are often better done by solo individuals.   

Steiner (1972), as described by Forsyth (2006), identified four important types of group 
tasks based on their structure:   

a) conjunctive tasks, which operate at the level of the lowest performer (e.g. running 
in a group),  

b) disjunctive tasks, which operate at level of the highest performer (e.g., answering 
math problems),  

c) additive tasks, in which all contributions add to performance (e.g. shoveling 
snow), and 

d) compensatory tasks, in which, for instance, performance of one can offset 
mistakes of others (e.g., independent guesses to estimate a quantity such as the 
number of jelly beans in a jar).  

Additive and compensatory tasks often benefit from groups working interdependently; 
disjunctive tasks can benefit from contributions of non-interacting groups, and highly skilled 
individuals will likely outperform teams on conjunctive tasks.  Furthermore, a task can be 
classified as unitary, meaning that it cannot be divided into subtasks, such that the group must 
work on it all together (or one person does the work while others watch), or divisible, meaning 
that it can be efficiently or meaningfully divided into subtasks and assigned to group members 
(Steiner, 1972).   

In addition, tasks can be characterized by the nature of the processes group members 
must engage in to carry them out effectively (Larson, 2009; McGrath, 1984). For instance, 
McGrath's task circumplex (1984) identifies four task categories that reflect different sets of 
team interaction processes:  

a) Generate tasks include creativity and planning tasks, that require idea generation; 
to succeed, group members should usually work in parallel to develop as many 
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divergent ideas as possible.  
b) Choose tasks or decision making tasks require selecting among specified 

alternatives, either as in “intellective” tasks with an objectively correct answer, or 
as  “judgment” tasks with hard to demonstrate correct answers (Laughlin, 1980; 
Laughlin & Ellis, 1986). It is necessary for groups to engage in effective 
information sharing processes to identify the correct response (discussed further 
below in the section on Processes).   

c) Negotiate tasks involve resolving conflicts of interest or viewpoints.  
d) Execute tasks involve performance of psychomotor tasks that require a high level 

of coordination, physical movement, or dexterity, to produce a correct or optimal 
solution.  

The type of task a group is faced with has important implications for many other facets of 
the group to be discussed below, including group composition, incentives, structure and process. 

Regardless of the type of work to be accomplished by the team or organization, another 
factor of great importance is the nature and clarity of the goals being pursued.  The positive 
effect of clear goals on individual performance is probably among the most-replicated result in 
all of organizational psychology (Locke & Latham, 2006).  Goals serve the purpose of both 
energizing and directing behavior. Goal-directed people focus their attention on behaviors 
leading to goal attainment and ignore activities irrelevant to the goal.  Goals also arouse energy 
in proportion to their difficulty (up to the level of the worker’s ability). The effects of goals are 
moderated by commitment; the impact of goal difficulty on performance increases with 
commitment to the goal. Goal specificity is also an important component; specific difficult goals 
produce better results than “do your best” or vague goals (Locke, Shaw, Saari, & Latham, 1981).  

The effects are similarly strong for goal-setting at the group level (O’Leary-Kelly, 
Martocchio, & Frink, 1994; Weldon & Weingart, 1993), although the picture becomes somewhat 
more complex when one attempts to align individual goals with group goals.  Whether group or 
individual goals are more salient, and whether they are aligned, determines the degree to which 
intragroup relations are characterized by cooperation or competition.  Other features of the task 
also come into play, such as whether the task is complex (Weingart, 1992) and whether it 
requires members to work interdependently (Weldon & Weingart, 1993). In addition, the types 
of goals assigned to groups have implications for the processes that develop.  For instance, as 
discussed further below, a team’s strategic orientation, that is, whether their goals are more 
offensive or defensive in nature, has implications for the kinds of information they will attend to 
within their group or in the environment (i.e., Woolley, 2011).   
 

Group and Organizational Structure  
Coordination is one of the most important problems a group or organization must solve in 

order to be effective (March & Simon, 1958). Coordination involves fitting together the activities 
of organization members, and the need for it arises from the interdependent nature of the 
activities that organization members perform (Argote, 1982). Okhuysen and Bechky (2009), in 
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their review on organizational coordination, concluded that “at its core, coordination is about the 
integration of organizational work under conditions of task interdependence and uncertainty” 
(Faraj & Xiao, 2006).  More specifically in teams, coordination often refers to the process of 
synchronizing or aligning the activities of the team members with respect to their sequence and 
timing (Marks, Mathieu, & Zaccaro, 2001; Wittenbaum, Vaughan, & Stasser, 1998). 

Furthermore, while groups and organizations can coordinate through the explicit 
development of plans and routines, dynamic situations often call for planning that occurs in real 
time (Wittenbaum et al., 1998).  For instance, when studying medical emergency units, Argote 
(1982) argued that non-programmed means of coordination, which involve on-the-spot sharing 
of information among organization members, are an effective way of dealing with the increased 
demands associated with increased uncertainty.  

While the ability to coordinate tacitly and dynamically may be an important contributor 
to collective intelligence, it may also be an outcome. In a study of tacit coordination in laboratory 
teams, Aggarwal, Woolley, Chabris, and Malone (2011; in prep) found that collective 
intelligence was a significant predictor of teams’ ability to coordinate their choices in a 
behavioral economics game, despite being unable to communicate, allowing some groups to earn 
significantly more money during the lab session.   
 One of the most important vehicles through which groups and organizations coordinate is 
their structure, and as groups grow in size, their structure can play an increasingly important role 
in determining their effectiveness.  

At a very high level, organizational theorists and economists have made a distinction 
between organizing activities in hierarchies and in markets (Williamson, 1981).  For instance, a 
given activity (say producing tires for a car) can, in principle, be performed inside the same 
hierarchical organization that manages other parts of the process (say General Motors making a 
car), or it can be performed by an external supplier (say Goodyear).  In the former case, the 
activity is coordinated by hierarchical management processes inside the firm (General Motors); 
in the latter, it is coordinated by negotiations in a market and contracts between a buyer (General 
Motors) and a seller (Goodyear).   

The choice of which arrangement is best depends crucially on the transaction costs of the 
different arrangements, and these costs, in turn, are affected by factors like opportunism, search 
costs, and the specificity of the assets exchanged (Williamson, 1973).  Some authors have also 
talked about other kinds of organizational structures, such as networks in which rapidly shifting 
connections within a single organization or among different organizations are much more 
important than the stable hierarchies of traditional organizations (Powell, 1990).   
 The vast majority of research on organizational structure has focused on ways of 
structuring hierarchical organizations.  Several key lessons about collective intelligence, in 
general, emerge from this work: 

(1)  Differentiation and integration.  As Lawrence and Lorsch (1967) point out, effective 
organizations usually need to differentiate, that is, to divide the overall goal of the organization 
into different kinds of tasks and to create different parts of the organization that are focused on 
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these different kinds of work.  For instance, this division of labor might involve creating 
different groups for marketing, manufacturing, and engineering, or for different products or 
customers.  But then there also needs to be some way to integrate the different parts of the 
organization to achieve the organization’s overall goals (Lawrence & Lorsch, 1967).  For 
instance, organizations can coordinate the activities of different organizational parts using 
mechanisms such as informal lateral communication (such as casual conversations at lunch), 
formal groups (such as task forces), integrating managers (such as product managers or account 
managers), or matrix managers (Galbraith, 2002). 

(2)  Integration can be viewed as managing interdependencies.  Thompson (1967) 
identified three types of interdependencies among activities:  pooled (where, for instance, 
activities share a resource such as money or machine time), sequential (where resources from 
one activity flow to another one), and reciprocal (where resources flow back and forth between 
two or more activities).  Thompson and later researchers (such as Malone et al., 1999; Van de 
Ven, Delbecq, & Koenig, 1976) showed how different kinds of coordination processes are 
appropriate for different kinds of interdependencies.  For instance, pooled (or “shared resource”) 
dependencies can be managed by coordination processes such as:  “first come-first served”, 
priority order, budgets, managerial decision, or market-like bidding (Malone et al, 1999). 

(3)  There is no one best way to organize.  The widely accepted contingency theory of 
organization design (e.g., Lawrence and Lorsch, 1967; Thompson, 1967; Galbraith, 1973) holds 
that there is no one best way to organize.  Instead, according to this view, the best organizational 
design for a given situation depends on many factors such as the organization’s strategy, tasks, 
technology, customers, labor markets, and other aspects of its environment (e.g., Daft, 2001; 
Duncan, 1979).   

For instance, functional structures (with separate departments for functions like 
engineering, manufacturing, and sales) are well-suited to situations where maximizing depth of 
functional expertise and economies of scale are critical, but they are generally not well-suited to 
situations where rapid adaptation to changing environments is important.  Divisional structures 
(with separate divisions for different products, customers, or geographical regions) are well-
suited to environments where rapid adaptation to environmental changes is important or where 
success depends on customizing products or services for specific types of customers or regions.  
But they are not well-suited to reducing costs by taking advantage of economies of scale.  In 
matrix structures, there are both functional and divisional structures, and some employees report 
to two (or more) bosses.  For instance, an engineering manager might report to both a vice-
president of engineering and a vice-president for a specific product.  The matrix structure has the 
potential to achieve the benefits of both functional and divisional structures (such as both 
economies of scale and rapid adaptation to change), but it involves significantly more managerial 
complexity and coordination costs.  

While these principles of organizational design were articulated in the context of large, 
hierarchical, human organizations, we suspect that they can all be generalized in ways that could 
help understand collective intelligence in many other kinds of systems, such as computer 
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networks, brains, and ant colonies. 
In addition to analyzing traditional, hierarchical organizations, some organizational 

researchers have also begun to analyze the new kinds of organizational forms that are beginning 
to emerge as new information technologies make possible new ways of organizing human 
activity (Malone, 2004; e.g. Malone, Yates, & Benjamin, 1987).  For example, more 
decentralized structures such as loose hierarchies, democracies, and markets may become more 
common as inexpensive communication technologies make them more feasible (Malone, 2004).  
More recently, Malone, Laubacher, and Dellarocas (2010) have identified a set of design patterns 
(or “genes”) that arise repeatedly in many innovative new forms of collective intelligence such as 
Wikipedia, InnoCentive, and open source software communities such as Linux.  Examples of 
these genes include contests, collaborations, prediction markets, and voting.  
 

Processes 
While the literature on group process is vast, the facets of group process most germane to 

collective intelligence are those which characterize intelligent systems more generally, whether 
technological or biological--namely memory, attention and problem-solving.  Analogous 
processes in each of these categories have been explored at the group level. This is consistent 
with the emerging view of groups as information processors (Hinsz, Tindale, & Vollrath, 1997) 
in that many of the group processes most central to group functioning involve cognitive or meta-
cognitive processes. In addition, we will review the findings on group learning which is thought 
by many to be a key characteristic of intelligent systems and which builds on all of the processes 
discussed. 

 Memory in Groups  
Group memory has been studied mainly via work on transactive memory systems.  A 

transactive memory system (TMS) refers to a shared system that individuals in groups develop to 
collectively encode, store, and retrieve information or knowledge in different domains (Argote & 
Ren, 2012; Hollingshead, 2001; Lewis & Herndon, 2011; Wegner, 1987). Groups with a well-
developed TMS can efficiently store and make use of a broader range of knowledge than groups 
without a TMS.  According to TMS theory as conceived by Wegner (1987), and first 
demonstrated in the context of small groups by Liang, Moreland, and Argote (1995), there are 
three behavioral indicators of TMS: specialization, credibility and coordination.  

Specialization in the team is reflected in how group members divide the cognitive labor 
for their tasks, with members specializing in different domains. Credibility is reflected in 
members’ reliance on one another to be responsible for specific expertise such that collectively 
they possess all of the information needed for their tasks. Coordination is reflected in smooth and 
efficient action (Lewis, 2004; Moreland, Argote, & Krishnan, 2002; Moreland & Myaskovsky, 
2000).  

Through performing tasks and answering questions, a member establishes credibility and 
expertise status. Other members, being aware of the person’s expertise, direct new knowledge in 
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the domain to him or her, which reinforces the person’s specialization and team members’ trust 
in his or her expertise. Further, members know whom to count on for performing various tasks 
and whom to consult for information in particular domains, which improves coordination 
(Argote & Ren, 2012). Dozens of studies have demonstrated the positive effects of TMS on 
group performance in both laboratory and field settings (Lewis & Herndon, 2011), though work 
continues to refine measures and conceptualization of the construct and its relationship to 
performance for different types of tasks (Lewis & Herndon, 2011). 

 Attention in Groups   
In individuals, teams, and organizations, attention is viewed as central to explaining the 

existence of a limited information processing capacity (Ocasio, 2011; Styles, 2006) and thus has 
a great deal of relevance to understanding and studying collective intelligence. Work on attention 
at the organizational level started with the work of Simon (1947) who examined the channeling, 
structuring, and allocation of attention as a central concept in studying administrative behavior. 
March and colleagues continued with the examination of attention allocation in the study of 
organizational decision making (Cohen, March, & Olsen, 1972). Ocasio (1997), in his  attention-
based theory of the firm, focused on how attention in organizations shapes organizational 
adaptation.   

In a more recent review of the developing literature on attention in organizations, Ocasio 
(2011) identified three different theoretical lenses that are used in studying attention, including: 

a) attentional perspective (i.e. the top-down cognitive structures that generate 
heightened awareness and focus over time to relevant stimuli and responses),  

b) attentional engagement (i.e., sustained allocation of cognitive resources to guide 
problem-solving, planning, sensemaking and decision making), and  

c) attentional selection (i.e. the emergent outcome of processes that result in 
focusing attention on selected stimuli or responses to the exclusion of others).   

Newer lines of work to examine the development of shared attention in groups fall under 
the “attentional selection” category identified by Ocasio (2011), and ask the question: What do 
teams make the center of their focus as they conduct their work? And what do they allow to fall 
by the wayside?    
 Teams exhibit regularities in the types of issues they attend to in the course of carrying 
out their work, and these regularities have been the focus of research on team task focus.  Some 
teams are process-focused, focusing on the specific steps necessary to carry out tasks and how 
those are arranged among members and over time (Woolley, 2009a, 2009b).  By contrast, 
outcome-focused teams place more emphasis on the products of their work or the “big picture” 
and allow that to drive coordination and decision-making.   

Teams that are high in outcome focus tend to produce more innovative or creative 
outcomes, and adapt more effectively to difficulties that arise in their work (Woolley, 2009a), 
while teams that are process-focused commit fewer errors (Aggarwal & Woolley, 2013).  More 
recent work on offensive and defensive strategic orientation shows that a team’s position in a 
competitive environment is an important contextual antecedent of outcome or process focus and 
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the balance of attention members pay to the internal workings of the group versus the 
environment (Woolley, 2011; Woolley, Bear, Chang, & DeCostanza, 2013).  

Not only is the content of team focus important but so is the degree to which members 
agree about it.  This agreement around strategic priorities has been called strategic consensus in 
laboratory teams (Aggarwal & Woolley, 2013) and in top management teams (Floyd & 
Wooldridge, 1992; Kellermanns, Walter, Lechner, & Floyd, 2005), and at the dyadic level, it is 
called strategic compatibility (Bohns & Higgins, 2011). The degree to which group members 
agree about the team’s strategic priorities is likely to affect the clarity with which they will 
execute the task. Agreement around process focus, for example, has been shown to be extremely 
beneficial to reducing errors in production and execution tasks (Aggarwal & Woolley, 2013) 
while undermining the development of creative outcomes in teams (Aggarwal & Woolley, under 
review). 

Group Problem Solving and Decision Making  
Comprehensive treatments of group problem solving encompass much of what we have 

already discussed in this chapter, including group goals, task types, and social processes 
(Laughlin, 1980).  And the view of groups as entities that process information and make 
decisions is increasingly central to research on group problem solving (Hinsz, Tindale & 
Vollrath, 1997). The ability of groups to process information effectively--that is, to share 
relevant details, weight information appropriately, and arrive at the best conclusion--is directly 
tied to team performance (Mesmer-Magnus & DeChurch, 2009). Groups frequently base their 
decisions on irrelevant information, and disregard relevant information (Larson, 2009). Thus 
factors affecting the quality of group decision making have direct implications for collective 
intelligence.  

The main problems experienced in group decision making are associated with surfacing 
the relevant information and combining it appropriately.  Surfacing the relevant information is 
complicated by many of the issues concerned with other aspects of the Star Model:  Is there 
enough diversity of group members to have access to all of the necessary information?  Are the 
members’ goals and motivations aligned enough that they are willing to share the information 
they have?  

Assuming these aspects have been suitably addressed, there are a range of cognitive, 
motivational, and affective factors that can influence the kinds of information groups attend to 
(or ignore) in decision making.  In terms of cognitive factors, a long line of work on social 
decision schemes has investigated how predecision preferences of individuals combine to 
influence a joint decision (Davis, 1973).  Groups are also more likely than individual decision 
makers to use certain cognitive heuristics and biases (Kerr, MacCoun, & Kramer, 1996).  In 
particular, groups are vulnerable to biases resulting from the initial distribution of information.  
For instance, when there are “hidden profiles,” in which members initially prefer different 
alternatives based on conflicting information they hold, they may need to make s special effort to 
surface and share all the information they need to reach the correct solution (Stasser & Titus, 
1985). 
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Motivational approaches to group decision making focus on group members’ motivation 
to overlook disconfirming evidence and to believe in the infallability of their own group.  For 
instance, work on groupthink and social comparison examine these motivational issues 
(Isenberg, 1986; Janis & Mann, 1977; Sanders & Baron, 1977).  As another example, Toma and 
Butera (2009) demonstrate that within-group competition leads group members to share less 
information, and to be less willing to disconfirm initial preferences, as a result of mistrusting 
their teammates.  

In combining social and motivational factors, DeDreu et al. (2008) proposed a theory of 
motivated information processing in groups, in which epistemic motivation (motivation to 
understand the world) determines how deeply vs. shallowly group members seek out 
information, and social motivations (such as cooperation and competition) determine what 
information is shared by the group.  Thus, epistemic and social motivations interact to shape the 
quality of group judgment and decision making.  

Given the biases and difficulties in group decision making, some have advocated using 
collections of independent decision makers to gain the advantage of multiple perspectives 
without the drawbacks of the social processes that bias decisions (e.g., Surowiecki, 2004). First 
demonstrated by Galton (1907), it has since been repeatedly shown in studies of guessing and 
problem-solving that the average of many individuals’ estimates is often closer to the true value 
than almost all of the individual or even expert guesses. However, for any benefits to accrue 
from the use of a crowd, the individual estimates must be completely independent of one another 
and the sample sufficiently large and unbiased to enable errors to be symmetrically distributed 
(Surowiecki, 2004).  Even subtle social influence revealing knowledge of others’ estimates can 
create a cascade of effects that reduces the accuracy of crowds (Lorenz, Rauhut, Schweitzer, & 
Helbing, 2011).   

While independent decision makers can be useful for some types of decisions when the 
conditions for accuracy are in place, there are a range of other circumstances when traditional 
interacting group decisions are usually better. For instance, interacting groups are often better 
when the options are not well-defined or when the group needs to buy-in to a decision for it to be 
implemented.  In these circumstances, a number of interventions have been demonstrated to 
successfully improve group decision-making.  One type of intervention focuses on structuring 
group conversation so that the group identifies key goals or questions that need to be answered 
and how their information needs to be integrated to answer those questions (i.e., Woolley, 
Gerbasi, Chabris, Kosslyn, & Hackman, 2008). This approach can also be operationalized in the 
form of decision support systems, in which the system structures members’ inputs and facilitates 
the process of integration. 

A second type of intervention in group decision-making involves putting group members 
into different roles to adopt opposing points of view.  These are known most generally as 
“devil’s advocate” approaches.  They were named after a similar process adopted during the 16th 
Century as part of the canonization process in the Roman Catholic Church.  In the canonization 
process, an appointed person (the devil’s advocate) would take a skeptical view of a candidate in 
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opposition to God’s advocate, who argued in favor. 
A third approach involves encouraging a group to grant equal speaking time to all group 

members on the assumption that this will enable more relevant facts to be brought into the 
discussion. Equality in speaking time has been associated with higher collective intelligence in 
groups (Engel, Woolley, Jing, Chabris, & Malone, forthcoming; Woolley et al., 2010). 
Interventions involving real-time feedback on relative contributions to group conversation have 
also been shown to improve group decision making performance (DiMicco, Pandolfo, & Bender, 
2004). 

Group Learning  
Some views of intelligence equate the concepts of intelligence and learning. For instance, 

in individual psychology, the information processing viewpoint on intelligence sees learning as a 
core process of intelligence (Sternberg & Salter, 1982). Similarly, research on organizational IQ 
operationalizes the measure as the ability of the organization to gain new knowledge from R&D 
investments (Knott, 2008). However, other work conceptualizes learning as one outcome of the 
core capability of collective intelligence (Aggarwal, Woolley, Chabris, & Malone, in prep). 

Whether learning is encompassed within intelligence or viewed as an outcome of it, a 
great deal of evidence suggests that groups and organizations vary enormously in their ability to 
learn. The performance of some organizations improves dramatically with experience while the 
performance of others remains unchanged or even deteriorates (Argote, 1999).  

In general, group learning refers to changes in a group—including changes in cognitions, 
routines, or performance—that occur as a function of experience (Argote, Gruenfeld, & Naquin, 
2001; Argote & Miron-Spektor, 2011; Fiol & Lyles, 1985). For example, as groups gain 
experience, they may acquire information about which group members are good at which tasks, 
how to use a new piece of technology more effectively, or how to coordinate their activities 
better. This knowledge may in turn improve their performance (Argote, 1999).  

It is sometimes useful to distinguish two kinds of group learning:  (a) changes in 
knowledge (which may be gauged from change in performance), and (b) changes in group 
processes or repertoires (Argote et al., 2001; Argote & Miron-Spektor, 2011; Edmondson, 1999; 
Fiol & Lyles, 1985; Wilson, Goodman, & Cronin, 2007).  It is also important to realize that 
groups may learn (e.g., change processes) without any change in performance, and they may 
change performance (e.g., because of changes in the environment), without any corresponding 
change in the group’s knowledge (Argote, 1999).  And sometimes knowledge may be explicit 
(easily codifiable and observable; i.e., Kogut & Zander, 1992) while at other times it may be 
only tacit  (unarticulated and difficult to communicate, i.e., Nonaka, 1994). 

An organization’s overall ability to learn productively—that is, to improve its outcomes 
through better knowledge and insight (Fiol & Lyles, 1985)—depends on the ability of its teams 
to learn  (Edmondson, 1999; Roloff, Woolley, & Edmondson, 2011; Senge & Sterman, 1992). 
Much of the work on group learning uses the concept of learning curves originally developed in 
individual psychology (Ebbinghaus, 1885; Thorndike, 1898) to characterize the rate of 
improvement, and researchers have found considerable variation in this rate for different groups 
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(Argote & Epple, 1990; Dutton & Thomas, 1984; Knott, 2008). 
 

Motivation and Incentives 
Assuming that the group is working on a well-defined task, is structured appropriately and using 
effective processes for conducting work, it is also important to evaluate whether the group 
members are properly motivated to do the work. As discussed previously, specific difficult goals 
can be motivating, but motivation can come from other sources as well. The literature has 
generally looked at two sources of motivation -- extrinsic motivation, often in the form of money 
or cash incentives, and intrinsic motivation, derived from the internal satisfaction associated with 
the work itself.  

Monetary incentives are the core foundation to induce high levels of effort in traditional 
organizational settings (Lazear, 2000; Prendergast, 1999). At times they have been shown to 
increase the quantity, but not the quality of work produced (Jenkins, Mitra, Gupta, & Shaw, 
1998). The use of group-level monetary incentives can be tricky, as group-based incentives are 
highly subject to free riding (Alchian & Demsetz, 1972; Lazear & Shaw, 2007). Creating reward 
interdependence in teams can enhance performance, but only if accompanied by highly 
cooperative work behavior as well (Wageman, 1995; Wageman & Baker, 1997).  

When it is difficult for an employer to identify and reward the exact contribution made by 
each employee to the team output, employees working in a team will typically lack incentives to 
provide the optimal level of effort and work less than if they were working alone. This has also 
been referred to as the ‘moral hazard’ problem – and suggests that collaboration, particularly by 
anonymous workers outside of an employment relationship, should produce moral hazard 
(Holmstrom, 1982) and social loafing (Latane, Williams, & Harkins, 1979).  

This moral hazard potential is exacerbated in the group work typical of online platforms, 
which could attract individuals of any number of characteristics and inclinations—including 
those having greater inclination to free riding (Kerr & Bruun, 1983).  However, despite the risk 
of free riding, monetary incentives have been shown to be effective in settings where output 
measures are not the outcome of the inputs of a single individual but rather derive from the joint 
contribution of many individuals, particularly when compared to alternative mechanisms such as 
incentive schemes that are not tied to output measures at all (Prendergast, 1999).  

Turning specifically to motivation and team creativity, the research relating incentives to 
creativity is a bit muddled, with some evidence suggesting that extrinsic or cash rewards for 
teams promote creativity (e.g., Eisenberger & Rhoades, 2001), whereas other studies suggest that 
extrinsic rewards inhibit creativity or produce other undesirable effects (Kruglanski, Friedman, 
& Zeevi, 1971; Manso, 2011).  

Cash incentives can also at times crowd out non-cash based motivations (e.g., Frey & 
Jegen, 2001), which are especially important in the case of creative problem-solving work. 
Amabile and colleagues have demonstrated that reduced intrinsic motivation and reduced 
creativity can be caused by each of several different extrinsic factors, including: expected 
external evaluation from being observed, competition with peers, and constrained choice in how 
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to do one’s work. While competing with peers (who might otherwise share information) seems to 
dampen creativity, competing with outside groups or organizations can stimulate it (see Amabile 
& Fisher, 2000 for a review). 

There are also circumstances under which certain forms of extrinsic motivation may 
support intrinsic motivation and creativity - or at least not undermine it (Amabile, 1993). This 
“motivational synergy” is most likely to occur when people feel that the reward confirms their 
competence and the value of their work, or enables them to do work that they were already 
interested in doing. This is consistent with earlier research demonstrating that “informational” 
and “enabling” rewards can have positive effects on intrinsic motivation (Deci & Ryan, 1985). 

It is also important to realize that monetary incentives do not preclude other motivations. 
For instance, in peer production contexts (such as developing open source software), there are 
many conspicuous non-monetary motivations for participants. These motivations include  (a) the 
intrinsic enjoyment of doing the task, (b) any benefits to the contributors from the using the 
software or other innovations themselves, and (c) “socially-oriented” motivations, fed by the 
presence of other participants on the platform (Lakhani & Wolf, 2005). Social motivations, for 
example, include such things as an interest in gaining affiliation with the larger team as a 
community, or of accruing status or signaling one’s expertise to the community (Butler, Sproull, 
Kiesler, & Kraut, 2007; Lakhani & Wolf, 2005; Lerner & Tirole, 2005).   

Evidence also suggests that rather than necessarily attracting loafers, a collaborative 
online context may attract those who prefer collaboration and will work relatively diligently in 
these contexts (Boudreau, Lacetera, & Lakhani, 2011). In fact, online collaboration contexts 
often embody the job characteristics that Hackman and Oldham (1976) found were most directly 
associated with internal motivation:  variety of content, autonomy over how work is conducted, 
and knowledge of results. 

Selecting the Right People  
We now come to the last component of the Star Model:  the selection of the right 

individuals to carry out the work.  Two categories of characteristics are important to consider 
when selecting members of a team or organization with an eye toward enhancing collective 
intelligence--those that contribute information or skills to the group (and thus must be considered 
in combination with other members) and those that facilitate the transfer of information (and can 
be evaluated individually).    

A long line of research on group diversity has examined the types of differences that are 
helpful vs. harmful to group performance. The information processing perspective suggests that 
composing diverse teams is best, arguing that a broader range of task-relevant knowledge, skills, 
and abilities provides a team with a larger pool of resources for dealing with non-routine 
problems (Van Knippenberg & Schippers, 2007; Williams & O’Reilly, 1998). In fact, one of the 
primary reasons organizations use teams, and not simply individuals, is to have access to a 
diverse array of information, perspectives, and skills.  Thus group composition is one of the most 
commonly studied team variables (Guzzo & Dickson, 1996; Hollenbeck, DeRue, & Guzzo, 
2004; Reiter-Palmon, Wigert, & Vreede, 2012; Tesluk, Farr, & Klein, 1997).  
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Despite its potential value, however, a number of studies and meta analyses have failed to 
show strong effects of diversity on team performance (Joshi & Roh, 2009). Scholars have, 
therefore, urged researchers to pay close attention to the type of diversity variable studied.  It 
may be critical, for example, to  examine the specific type of diversity that is most relevant to the 
outcomes being investigated, (Harrison & Klein, 2007; Horwitz & Horwitz, 2007; Joshi & Roh, 
2009; Milliken & Martins, 1996).  

With regard to group composition, groups performing tasks which benefit from a range of 
skills or expertise will underperform unless composed with the requisite cognitive diversity 
(Woolley et al., 2007, 2008) even when compared to groups of higher general intelligence or 
ability  (Hong & Page, 2004).  Groups that are too homogenous will also be less creative than 
more cognitively diverse groups (Aggarwal & Woolley, under review) and exhibit lower levels 
of collective intelligence than moderately cognitively diverse groups (Aggarwal et al., 2011).  
However, cognitively diverse groups do run the risk of making errors in execution tasks, 
particularly when the diversity leads them to not be on the same page about how to prioritize task 
elements (Aggarwal & Woolley, 2013).  Thus many researchers focus on the moderating effects 
of group process, such as the development of transactive memory systems and strategic 
consensus, in examining the relationship between diversity and performance. 
 Other important characteristics to consider in group composition are those related to 
social or emotional intelligence. Emotional intelligence is defined as the capacity to reason about 
emotions, and to use emotions to enhance thinking.  It includes the abilities to accurately 
perceive emotions in others, to access and generate emotions so as to assist thought, to 
understand emotions and emotional knowledge, and to reflectively regulate emotions so as to 
promote emotional and intellectual growth (Mayer & Salovey, 1993). There is a general 
consensus that emotional intelligence enhances group performance (Druskat & Wolff, 2001), at 
least in the short term (Ashkanasy & Daus, 2005).   
 A specific subset of these skills, related to the perception of emotions and mental states, 
has been studied under the term “theory of mind” (ToM) (Apperly, 2012; Baron-Cohen, 
Wheelwright, Hill, Raste, & Plumb, 2001; Flavell, 1999; Premack & Woodruff, 1978; Saxe, 
2009).  Theory of mind ability encompasses the accurate representation and processing of 
information about the mental states of other people, also known as “mentalizing ability” (Baron-
Cohen et al., 2001), which contribute to successful interaction with others. Therefore, theory of 
mind appears to be the component of emotional intelligence with the greatest relevance to studies 
of collective intelligence. 

The ability to make simple inferences about the false beliefs of others has been explored 
by developmental psychologists as a milestone reached by preschool age children (Wimmer & 
Perner, 1983), and it is widely recognized that people with various clinical conditions such as 
autism have difficulties with theory of mind (Baron-Cohen, 1991). A common--though usually 
untested--assumption in much of this research is that people with greater theory of mind abilities 
will be more competent at various kinds of social interaction.  But only a few studies have tested 
this in limited ways with children (Begeer, Malle, Nieuwland, & Keysar, 2010; Peterson, 
Slaughter, & Paynter, 2007; Watson, Nixon, Wilson, & Capage, 1999), and fewer still have 
tested it with adults (Bender, Walia, Kambhampaty, Nygard, & Nygard, 2012; Krych-
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Appelbaum, Law, Barnacz, Johnson, & Keenan, in press; Woolley et al., 2010). 
For instance, Woolley et al. (2010) found that groups whose members had higher average 

ToM scores (as measured by the “Reading the Mind in the Eyes” (RME) test, Baron-Cohen et al, 
2001) also had significantly higher collective intelligence. Indeed, average ToM scores remained 
the only significant predictor of collective intelligence even when controlling for individual 
intelligence or other group composition or process variables, such as proportion of women in the 
group or distribution of communication.  

The degree to which ToM, as measured by RME or otherwise, can be altered by training 
or experience remains an open question. Recent studies (Kidd & Castano, 2013) suggest that 
theory of mind abilities as measured by RME can be, at least temporarily, improved by reading 
literary fiction, which implies a new and interesting avenue of research for improving group 
performance. 
 

Conclusion 
In this chapter, we have provided a brief and selective overview of a relatively vast 

literature on group and organizational performance.  We have focused specifically on variables 
that strike us as particularly germane for the design and study of collectively intelligent systems.  
In so doing, we have used Galbraith’s Star Model to guide our consideration of the various issues 
to be considered by effective organizations.   

It is intriguing to further consider how creating human systems or human-computer 
systems might deal with these issues in completely new ways. For instance, could we design 
human-computer environments in such a way that group processes would be automatically 
structured to be optimal for the type of task facing the group at a given time?  So that developing 
transactive memory systems in groups would be either automatic or trivial?  So that group 
members would be prompted to balance their contributions to the work at hand and matched 
perfectly in terms of their distribution of knowledge or skills?  So that subtle social cues would 
be amplified in a manner to allow the group as a whole to enjoy a high level of emotional 
intelligence?   

These are only a few of the possibilities that are suggested by coupling an understanding 
of the key factors for collective intelligence identified in the teams and organizations literature 
with those of other literatures discussed in this volume.  We hope the research and ideas 
discussed here will enable readers to see ways to increase collective intelligence to levels never 
conceived of before.  
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Abstract 
Teams offer the potential to achieve more than any person could achieve 
working alone; yet, particularly in teams that span professional 
boundaries, it is critical to capitalize on the variety of knowledge, skills, 
and abilities available. This article reviews research from the field of 
organizational behavior to shed light on what makes for a collectively 
intelligent team. In doing so, we highlight the importance of moving 
beyond simply including smart people on a team to thinking about how 
those people can effectively coordinate and collaborate. In particular, we 
review the importance of two communication processes: ensuring that 
team members with relevant knowledge (1) speak up when one’s 
expertise can be helpful and (2) influence the team’s work so that the 
team does its collective best for the patient. 

 
The Promise and Challenge of Team-Based Cross-Disciplinary Collaboration in Health 
Care 
Across health care, there is an increasing reliance on teams from a variety of specialties 
(e.g., nursing, physician specialties, physical therapy, social work) to care for patients. At 
the same time, medical error is estimated to be “the third most common cause of death 
in the US” [1], and teamwork failures (e.g., failures in communication) account for up to 
70-80 percent of serious medical errors [2-5]. The shift to providing care in teams is well 
founded given the potential for improved performance that comes with teamwork [6], 
but, as demonstrated by these grave statistics, teamwork does not come without 
challenges. Consequently, there is a critical need for health care professionals, 
particularly those in leadership roles, to consider strategies for improving team-based 
approaches to providing quality patient care. 
 
Teams offer the promise to improve clinical care because they can aggregate, modify, 
combine, and apply a greater amount and variety of knowledge in order to make 
decisions, solve problems, generate ideas, and execute tasks more effectively and 
efficiently than any individual working alone [6]. Given this potential, a multidisciplinary 
team of health care professionals could ideally work together to determine diagnoses, 
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develop care plans, conduct procedures, provide appropriate follow up, and generally 
provide quality care for patients. 
 
Yet we know that, overall, teams are fraught with failures to utilize their diverse set of 
knowledge, skills, and abilities and to perform as well as they could [6, 7]. The potentially 
harmful consequences for patients cannot be ignored: poor teamwork—such as 
incomplete communication and failing to use available expertise—increases the risk of 
medical error and decreases quality of care [2-5]. 
 
This article reviews research from the field of organizational behavior to shed light on 
group structures and processes that facilitate the use of available expertise for more 
effective decision making, negotiation, execution of tasks, creativity, and overall team 
performance. First, we highlight what it means to have a collectively intelligent team: 
one with the capability to perform well consistently across a range of tasks [8]. In doing 
so, we draw a distinction between having smart people on a team and having smart teams. 
We review the importance of laying the groundwork for creating smart teams, which 
enables two critical communication processes: ensuring that team members with 
relevant knowledge (1) speak up when their expertise can be helpful and (2) influence the 
team’s work so that the team does its collective best for the patient. 
 
Collective Intelligence 
In research and practice, a common belief is that teamwork is best when the team has 
the best—that is, the smartest—people; yet recent research challenges this 
assumption. Following methods used in psychology to study individual intelligence, 
Woolley et al. [8] investigated the possibility of a collective intelligence factor: a latent 
factor describing a team’s general ability to perform on a wide variety of tasks. They 
brought teams into the laboratory, had them perform a wide variety of tasks [6, 9], and 
found that a team’s performance on one type of task was closely related to its 
performance on all types. When they calculated a collective intelligence score based on 
the team’s performance on the set of tasks, they found that it was only moderately 
related to the individual members’ intelligence scores and was more predictive of future 
team performance than was individual members’ average intelligence score [8]. This 
evidence suggests an important question: If smart teams are not simply teams of smart 
people, what leads to a collectively intelligent team? 
 
A series of studies have revealed factors related to collective intelligence, providing some 
insight into how to more reliably cultivate smart teams. First is the social perceptiveness 
of team members, or their ability to infer others’ mental states, such as beliefs or 
feelings based on subtle cues [10]. The average social perceptiveness of the team 
members is predictive of collective intelligence [11]. Second, in both laboratory and field 
studies, researchers have found that greater amounts of participation and more equal 
participation are associated with higher collective intelligence [8, 11]. 
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A common thread in this work is the idea that these group structures and processes 
associated with collective intelligence are enhancing the quality of information sharing in 
the team [12]. The speculation is that members who pick up on a wider variety of subtle 
cues, and teams that operate in a manner that incorporates multiple perspectives, will 
operate with more and better information than they would otherwise. These patterns of 
interaction among team members allow teams to make good use of members’ 
expertise—a key reason teams could be effective in health care—but capitalizing on a 
team’s collective expertise is surprisingly difficult. 
 
Expertise Use 
The process of expertise use in teams is multifaceted. Team members must first share 
relevant knowledge (i.e., knowledge about the task at hand) with others, and, second, 
that voiced knowledge must impact the team’s work. The communication processes 
of speaking up and influencing others both come with challenges. 
 
Speaking up. The challenge for effective information sharing begins with identifying who 
should be on the team, which can help to facilitate knowledge sharing. Members who 
know the team’s boundaries—that is, who else is assigned to the team—also know to 
whom they can go for information and with whom they should share their information 
[13]. In this way, having a clear understanding of membership can increase the likelihood 
that people with relevant knowledge will be included in discussions, a necessary first 
step to ensuring that those people have opportunities to speak up. As an example, there 
is evidence from the study of pediatric care that including patients’ families and 
nurses—who are often excluded from physicians’ rounds—provides meaningful 
benefits in the form of better diagnoses and care plan development because these 
individuals can contribute information not possessed by other team members that can 
be used in making care decisions [14, 15]. 
 
In addition to gathering the right people on a team, those with relevant knowledge must 
speak up if their expertise is to be used effectively by the team. One obstacle is that 
members may not realize they have information worth sharing. For example, research on 
“the common knowledge effect” highlights the tendency for team members to focus on 
knowledge that is already commonly shared among group members. This is an effect 
based in simple probability: if all group members know a piece of information, for 
example an attribute of a job candidate, that information is more likely to be mentioned 
during a group discussion than information known by only one member [16]. As a result, 
uniquely held, important knowledge could go unspoken because members are less likely 
to think of it. Additionally, some evidence suggests that stereotypes about a social 
group’s expertise can lead team members to incorrectly assess their own knowledge 
relative to that of others. For example, women who have deep knowledge about cars 
(reflecting a mismatch between the gender of the expert and the stereotype of that 
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gender’s knowledge) may incorrectly assume they do not know as much about cars as a 
man, while a man may incorrectly assume he knows more about cars than the 
knowledgeable woman [17]. This can limit the likelihood that all relevant knowledge is 
voiced. For example, a nurse might believe physicians have more knowledge about a 
particular clinical treatment (because physicians typically are knowledgeable about 
treatments) and remain quiet, when in fact the nurse has important information about 
how the patient has been responding to that treatment. In this way, cognitive biases 
triggered by a group’s composition as well as the common knowledge effect can lead 
people to withhold knowledge because they do not realize they have relevant and unique 
knowledge to contribute. 
 
Psychological safety, which suggests “a sense of confidence that the team will not 
embarrass, reject, or punish someone for speaking up” [18], is another factor affecting 
the likelihood of speaking up. A lack of psychological safety, which often comes from 
being in lower status roles or professions, can lead team members to avoid speaking up 
even when they know they have something to contribute [18, 19]. 
 
Despite these challenges, there are some methods to facilitate effective information 
sharing. At the outset of a team’s work, collaborative planning, in which members 
consider the knowledge of all team members, could facilitate team members’ recognition 
of their own knowledge; it has been shown to enhance team ability to utilize knowledge 
[20]. Additionally, establishing group norms for critical thinking rather than norms for 
forging consensus leads teams to engage in more effective information sharing [21]. 
Once the work is under way, teams benefit from members, particularly high-status 
members, engaging in inclusive behaviors. Such behaviors include actively eliciting 
information from other team members—that is, asking questions explicitly and 
proactively about whether anyone has contradicting or as yet undiscussed information 
[19, 22, 23]. Inclusive behaviors also include showing appreciation for members’ 
contributions, for example, by stressing the importance of using all information (including 
mistakes) as a means for enhancing the team’s work and learning and by reacting to 
others’ contributions with constructive responses [19]. In studies about interactions 
among nursing teams, cardiac surgery physician teams, and neonatal intensive care 
units, researchers have consistently found that when members engage in inclusive 
behavior, the other team members feel more psychologically safe and are more likely to 
speak up about information relevant to the team’s work [19, 22, 23]. 
 
Influencing others. If team members’ knowledge is to be used to enhance team 
performance, once that knowledge is voiced, it must be incorporated into the team’s 
work and not ignored or dismissed. When information is overlooked, one culprit could be 
the common knowledge effect. Research shows that uncommon information, or 
information uniquely held by at most a few team members, is not only less likely to be 
voiced but also more likely to be ignored and less likely to be repeated [24]. One reason 
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group members are unlikely to consider uncommon information is that it cannot be 
confirmed by other team members and, as a result, tends to be viewed as less credible, 
accurate, or relevant [25]. This assessment of uncommon information is problematic 
because unique information, if pooled, can lead to better decisions because it is based on 
a broader index of expertise [24, 25]. Indeed, the ability to pool such unshared 
information is an important source of a health care team’s potential to offer superior 
care to a patient than any individual working alone. 
 
Additionally, individual team members’ characteristics can determine their capacity to 
influence the team. Team members are likely to be more influential when they hold high 
status—even if that status comes from traits that are potentially unrelated to actual 
expertise, such as gender or age [26]. Team members’ social or professional categories 
can also affect their influence. For example, research on group diversity suggests that 
looking different from others in a group might increase a member’s influence. When a 
person is different from other teammates, he or she is expected to have different 
knowledge or perspectives to add to the group, and, if that person speaks up, others are 
more receptive than they would be to a similar group member [27, 28]. This biased 
attention to status and categorical cues that are unrelated to expertise and should be 
irrelevant can lead to undue influence for some members while leaving relevant 
knowledge of members with low status or from certain subgroups less likely to be 
considered and, therefore, less likely to influence the group’s work. 
 
To ensure that available expertise influences the team’s work, team members, and 
especially team leaders, can implement certain strategies. First, striving to repeat and 
call attention to uniquely held information can give that information a better chance to 
be incorporated into the team’s work, which ultimately should enhance the work itself. In 
a study of teams of physicians making diagnostic decisions, teams that repeatedly asked 
questions to surface unshared information (which only one person initially knew) as 
opposed to shared information (which all members knew) made more accurate 
diagnoses [29]. Additionally, to combat devaluation of knowledge based on differences 
in social or professional group, team members should promote a belief in the value of 
informational diversity, which can improve communication exchanges and the 
processing and integration of information [30]. Research shows that when teams have a 
greater expectation that they will encounter diverse opinions—and value diverse 
opinions—regardless of the source, they are less surprised by diverse opinions, consider 
them more frequently, and are overall better able to capitalize on the discussion of 
alternative ideas [31]. Valuing diverse opinions is helpful even if the idea being discussed 
is incorrect, as this can still lead team members to think more deeply about the issue, 
which improves creativity, decision making, and problem solving [32]. 
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Conclusion 
The need for all medical and health professions trainees to understand how to work 
across disciplinary boundaries is noteworthy, given that the stakes are high and that 
working together effectively requires more than simply ensuring that team members are 
smart people. Team members, especially those in leadership positions or with higher 
status, should actively invite input to ensure that team members voice all of their 
information. They should also be role models in expressing appreciation for diverse 
knowledge from all sources to ensure that team members’ input—regardless of who the 
team member is—will be considered and used in the team’s work. Such teams will be 
well suited to capitalize on their expertise, avoid errors, and provide effective patient 
care. 
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